Answer:
The water makes your individual hairs stick close together. ... When more light is absorbed by your wet hair, less light gets reflected back to your eyes. The result is that your hair appears darker than when it's dry.
The power used by Alex to drag the log across the yard is determined as 2,656 W.
<h3>Mass of the log</h3>
The mass of the log is calculated as follows;
W = mg
m = W/g
m = (400)/9.8
m = 40.82 kg
<h3>Velocity of the log</h3>
K.E = ¹/₂mv²
v² = 2K.E/m
v² = (2 x 900)/(40.82)
v² = 44.096
v = 6.64 m/s
<h3>Power used by Alex</h3>
P = Fv
P = 400 x 6.64
P = 2,656 W
Learn more about power here: brainly.com/question/13881533
#SPJ1
Answer:

Explanation:
To convert from moles to grams, the molar mass must be used.
1. Find Molar Mass
The compound is iron (III) chloride: FeCl₃
First, find the molar masses of the individual elements in the compound: iron (Fe) and chlorine (Cl).
There are 3 atoms of chlorine, denoted by the subscript after Cl. Multiply the molar mass of chlorine by 3 and add iron's molar mass.
- FeCl₃: 3(35.45 g/mol)+(55.84 g/mol)=162.19 g/mol
This number tells us the grams of FeCl₃ in 1 mole.
2. Calculate Moles
Use the number as a ratio.

Multiply by the given number of grams, 345.0.

Flip the fraction so the grams of FeCl₃ will cancel.



Divide.

3. Round
The original measurement of grams, 345.0, has 4 significant figures. We must round our answer to 4 sig figs.
For the answer we calculated, that is the thousandth place.
The 1 in the ten thousandth place tells us to leave the 7 in the thousandth place.

There are about <u>2.127 mole</u>s of iron (III) chloride in 345.0 grams.
4FeS2 + 11O2-> 2Fe2O3 + 8SO2
Not sure.... I think this is it
The number of liters of 3.00 M lead (II) iodide : 0.277 L
<h3>Further explanation</h3>
Reaction(balanced)
Pb(NO₃)₂(aq) + 2KI(aq) → 2KNO₃(aq) + PbI₂(s)
moles of KI = 1.66
From the equation, mol ratio of KI : PbI₂ = 2 : 1, so mol PbI₂ :

Molarity shows the number of moles of solute in every 1 liter of solute or mmol in each ml of solution

Where
M = Molarity
n = Number of moles of solute
V = Volume of solution
So the number of liters(V) of 3.00 M lead (II) iodide-PbI₂ (n=0.83, M=3):
