The equation of the parabola in the vertex form is y = (x - 3
- 5 with ( 3, -5) is the vertex of the parabola and 1 is the multiplier
In the above question, A parabolic equation is given as follows:
Y = x^2 - 6x + 4
The equation of the parabola in the vertex form is :
y = a (x - h
+ k
Where a is a multiplier in the equation and (h,k) are the coordinates of the vertex
So, in order to obtain this form, we will use the method of completing square :
Y = x^2 - 6x + 4
y =
- 6x + (9 -9) + 4
y = (x - 3
+ ( -9 + 4)
y = (x - 3
- 5
where, ( 3, -5) is the vertex of the parabola and 1 is the multiplier
Hence, The equation of the parabola in the vertex form is y = (x - 3
- 5 with ( 3, -5) is the vertex of the parabola and 1 is the multiplier
To learn more about, parabola, here
brainly.com/question/21685473
#SPJ1
Answer:
The solution is x = e⁶
Step-by-step explanation:
Hi there!
First, let´s write the equation
ln(x⁶) = 36
Apply logarithm property: ln(xᵃ) = a ln(x)
6 ln(x) = 36
Divide both sides of the equation by 6
ln(x) = 6
Apply e to both sides
e^(ln(x)) = e⁶
x = e⁶
The solution is x = e⁶
Let´s prove why e^(ln(x)) = x
Let´s consider this function:
y = e^(ln(x))
Apply ln to both sides of the equation
ln(y) = ln(e^(ln(x)))
Apply logarithm property: ln(xᵃ) = a ln(x)
ln(y) = ln(x) · ln(e) (ln(e) = 1)
ln(y) = ln(x)
Apply logarithm equality rule: if ln(a) = ln(b) then, a = b
y = x
Since y = e^(ln(x)), then x =e^(ln(x))
Have a nice day!
Answer:
6 toppings
Step-by-step explanation:
The t in this equation represents the amount of toppings.
22 + 0.65t = 26
-22 -22
0.65t = 4
0.65t/0.65 = 4/0.65
t = 6
They could get 6 toppings and the total would be $25.90.
250 total places to get food this year