Answer:
The electrons that occupy the outermost shell of an atom are called valence electrons. Valence electrons are important because they determine how an atom will react. By writing an electron configuration, you'll be able to see how many electrons occupy the highest energy level .
We have to get the relationship between metallic character and atomic radius.
Metallic character increases with increase in atomic radius and decrease with decrease of atomic radius.
If electrons from outermost shell of an element can be removed easily, that atom can be considered to have more metallic character.
With increase in atomic radius, nuclear force of attraction towards outermost shell electron decreases which facilitates the release of electron.
With decrease in atomic radius, nuclear force of attraction towards outermost shell electrons increases, so electrons are hold tightly to nucleus. Hence, removal of electron from outermost shell becomes difficult making the atom less metallic in nature.
What is the chemical compound?
Remember that
- For being a bond covalent ∆E<1.8
- For being a bond ionic ∆E>1.8
#1
Carbon is present so it's covalent
#2
#3
- P-H will hardly form a bond
#4
#5
Answer:
2-Butene
Explanation:
The first step is the <u>ionization</u> of the acid to produce the hydronium ion. Then the OH will attack this ion to produce a <u>charged species</u> that can be stabilized when <u>H2O is produced</u>.
Then an <u>elimination</u> takes place to produce the more <u>substituted alkene</u> 2-butene and the <u>hydronium ion</u> is gain produced.