Answer:
0.44 moles
Explanation:
Given that :
A mixture of water and graphite is heated to 600 K in a 1 L container. When the system comes to equilibrium it contains 0.17 mol of H2, 0.17 mol of CO, 0.74 mol of H2O, and some graphite.
The equilibrium constant ![K_c= \dfrac{[CO][H_2]}{[H_2O]}](https://tex.z-dn.net/?f=K_c%3D%20%20%5Cdfrac%7B%5BCO%5D%5BH_2%5D%7D%7B%5BH_2O%5D%7D)
The equilibrium constant 
The equilibrium constant 
Some O2 is added to the system and a spark is applied so that the H2 reacts completely with the O2.
The equation for the reaction is :

Total mole of water now = 0.74+0.17
Total mole of water now = 0.91 moles
Again:
![K_c= \dfrac{[CO][H_2]}{[H_2O]}](https://tex.z-dn.net/?f=K_c%3D%20%20%5Cdfrac%7B%5BCO%5D%5BH_2%5D%7D%7B%5BH_2O%5D%7D)
![0.03905 = \dfrac{[0.17+x][x]}{[0.91 -x]}](https://tex.z-dn.net/?f=0.03905%20%3D%20%20%5Cdfrac%7B%5B0.17%2Bx%5D%5Bx%5D%7D%7B%5B0.91%20-x%5D%7D)
0.03905(0.91 -x) = (0.17 +x)(x)
0.0355355 - 0.03905x = 0.17x + x²
0.0355355 +0.13095
x -x²
x² - 0.13095
x - 0.0355355 = 0
By using quadratic formula
x = 0.265 or x = -0.134
Going by the value with the positive integer; x = 0.265 moles
Total moles of CO in the flask when the system returns to equilibrium is :
= 0.17 + x
= 0.17 + 0.265
= 0.435 moles
=0.44 moles (to two significant figures)
Answer: C. no new substances
are formed<span>
</span><span>
<span>In the
physical change of matter, there is no new substance that is formed. It is only
the appearance of the matter that is being changed and not its chemical
composition. Cutting, tearing and grinding are only some of the examples that
exhibit physical change. </span></span>
Answer:
A. Treated water from the plant would affect communities downriver.
Explanation:
Phosphate because it's the closest to sulfur on the periodic 2