Answer:
0.17 moles
Explanation:
In the elements of the periodic table, the atomic mass = molar mass. <u>Ex:</u> Atomic mass of Carbon is 12.01 amu which means molar mass of Carbon is also 12.01g/mol.
In order to find the # of moles in a 12 g sample of NiC-12, we will need to multiply the number of each atom by its molar mass and then add the masses of both Nickel and C-12 found in the periodic table:
- Molar Mass of Ni (Nickel): 58.69 g/mol
- Molar Mass of C (Carbon): 12.01 g/mol
Since there's just one atom of both Carbon and Nickel, we just add up the masses to find the molar mass of the whole compound of NiC-12.
- 58.69 g/mol of Nickel + 12.01 g/mol of Carbon = 70.7 g/mol of NiC-12
There's 12g of NiC-12, which is less than the molar mass of NiC-12, so the number of moles should be less than 1. In order to find the # of moles in NiC-12, we need to do some dimensional analysis:
- 12g NiC-12 (1 mol of NiC-12/70.7g NiC-12) = 0.17 mol of NiC-12
- The grams cancel, leaving us with moles of NiC-12, so the answer is 0.17 moles of NiC-12 in a 12 g sample.
<em>P.S. C-12 or C12 just means that the Carbon atom has an atomic mass of 12amu and a molar mass of 12g/mol, or just regular carbon.</em>
Answer:
calcium is the correct answer :)
Answer:
The number of neutron in the Aluminium Isotope is :
B. 14
Explanation:
Isotopes : These are the atoms which have same atomic number but have different mass number.
<u>This image shows the average atomic mass of Al element because it is in decimals</u>.
Atomic mass = 26.98154
(Note : mass number of single isotope can never be in decimals)
It is the average of mass of different isotopes of Al
Major Isotopes of
are :
......atomic mass = 26
.......atomic mass = 27
mass of Al given in image(26.98) is nearly equal to mass of 2nd isotope(27)
mass of 
Now calculate the neutron in 
Number of neutron = mass number - atomic number
= 27 - 13
Number of neutron = 14
(Atomic mass is same as mass number)
I THINK it's <span>1,1-Difluorononane, or </span>

.<span>
</span>
Answer:
Er-144 -------> Dy-140 + He-4
Explanation:
Alpha decay is the release of a hydrogen nucleus. So the original atom will decrease the mass by 4 and the atomic number by 2.