Answer:
irrational
Step-by-step explanation:
See the image for a Venn diagram illustrating relationships among the various subsets of real numbers.
Solution :
Given :
ABCD is a quadrilateral.
Angle ADC = 90 degree
Angle DCB = 120 degree
Now angle DAB = 70 degree (alternate angles)
We know that the interior angles of a quadrilateral is 360 degrees.
So,
∠ DAB + ∠ ABC + ∠ BCD + ∠ CDA = 360°
70° + ∠ ABC + 120° + 90 ° = 360°
∠ ABC = 360° - (70° + 120° + 90°)
∠ ABC = 360° - 280°
∠ ABC = 80°
Now ∠ x = 180° - ∠ ABC (Line AB extended is 180° )
= 180° - 80°
= 100°
Hence proved.
Answer:
Sawswsswwwwwwwwwassa
Step-by-step explanation:
SawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassaSawswsswwwwwwwwwassa
When you are looking for this, the best way to do this is to divide 28 by 7. This will give you 4.
The other way to do this is to list the factors of 28, which are 1,2,4,7,14,28, and you will then be able to see which two are paired.
In this case, x is 4.
Hope I have been able to help you
In order for <em>F</em> to be conservative, there must be a scalar function <em>f</em> such that the gradient of <em>f</em> is equal to <em>F</em>. This means


Integrate both sides of the first equation with respect to <em>x</em> :

Differentiate both sides with respect to <em>y</em> :

But we assume <em>g</em> is a function of <em>y</em>, which means its derivative can't possibly contain <em>x</em>, so there is no scalar function <em>f</em> whose gradient is <em>F</em>. Therefore <em>F</em> is not conservative.