D= # of dimes
q= # of quarters
QUANTITY EQUATION:
d + q= 64
COST EQUATION:
0.10d + 0.25q= $9.25
STEP 1:
multiply quantity equation by -0.10 to be able to eliminate the d term in step 2
(-0.10)(d + q)= (-0.10)(64)
-0.10d - 0.10q= -6.40
STEP 2:
add equation from step 1 to cost equation to eliminate the d term and solve for q
Add
0.10d + 0.25q= $9.25
-0.10d - 0.10q= -6.40
0.15q= 2.85
divide both sides by 0.15
q= 19 quarters
STEP 3:
substitute q value in step 2 into either original equation to find d value
d + q= 64
d + 19= 64
subtract 19 from both sides
d= 45 dimes
CHECK:
0.10d + 0.25q= $9.25
0.10(45) + 0.25(19)= 9.25
4.50 + 4.75= 9.25
9.25= 9.25
ANSWER: There are 45 dimes and 19 quarters.
Hope this helps! :)
Answer:
B.Reigion D
Step-by-step explanation:
Answer:
equilateral acute
Step-by-step explanation:
Usando proporciones, hay que los $12,000 restantes deben ser investidos a una tasa de 11%.
<h3>¿Qué es una proporción?</h3>
Una proporción es una fracción de la cantidad total.
De las dos primeras inversiones, el ingreso es dado por:
0.08 x 15000 = $1,200.
0.09 x 22000 = $1,980
T = 1200 + 1980 = $3,180
Por la tercera inversión, busca-se un retorno de 4500 - 3180 = $1,320.
De esa forma, la tasa x es la seguiente:
12000x = 1320
x = 1320/12000
x = 0.11.
Los $12,000 restantes deben ser investidos a una tasa de 11%.
Puede-se aprender mas a cerca de proporciones es brainly.com/question/26425852
Answer:
$74,748.11
Step-by-step explanation:
In order to make use of the amortization formula, we need to find the equivalent monthly interest rate.
When 12% interest is compounded continuously, the annual multiplier is ...
e^0.12 ≈ 1.127497
The equivalent multiplier when the interest is compounded monthly is the 12th root of this,
(e^0.12)^(1/12) = e^0.01 ≈ 1.0100502 = 1 + r
___
The amortization formula tells us that monthly payment amount A will pay off principal P in n months:
P = A(1 -(1 +r)^-n)/r = $900(1 -1.0100502^-180)/0.0100502
P = $74,748.11
The customer can pay off a 12% loan of $74,748.11 at the rate of $900 per month for 15 years.