Draw or Cut two similar squares with sides
units long.
Draw or cut four pairs of similar right triangles with side lengths as indicated in the diagram.
Now arrange the similar triangles at the corners of the squares such that the sides
of one similar triangle plus the side
of a second similar triangle coincides with the length of the square.
We do another arrangement of the similar triangles. This time arrange another 4 similar triangles in the opposite corners, such that each pair forms a square.
Now comparing the two different arrangements we got two different areas that are equal.
The area of the uncovered squares in the first arrangement is 
The area of the two uncovered squares in the second arrangement is 
Equating the two areas gives the Pythagoras Theorem

Note that
is the hypotenuse,
and
are two shorter sides of the similar right triangles.
Answer:
(a) The total area of compound figure is
.
(b) The total perimeter of compound figure is 68.84 ft.
Step-by-step explanation:
Perimeter: The total distance covered by the figure.
Area: It is defined as the space occupied by the figure.
Given:
Length of rectangular figure = 19 ft
Breadth of rectangular figure = 12 ft
Radius of circle, r = 
Part (a):
Now calculating the total area of the compound figure.

Now putting all the given values in this formula, we get:

Part (b):
Now calculating the total perimeter of the compound figure.

Now putting all the given values in this formula, we get:

Answer:
First option: 6y^2sqrt(10) + 12sqrt(5y)
Step-by-step explanation:
3sqrt(10) * (2y^2 + 2sqrt(2y)
= 6y^2sqrt(10) + 6sqrt(20y)
= 6y^2sqrt(10) + 12sqrt(5y)