1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MatroZZZ [7]
3 years ago
10

________ reaction time involves selecting a specific and correct response from several choices when presented with several diffe

rent stimuli.
Physics
1 answer:
notsponge [240]3 years ago
4 0
The answer would be complex reaction time
You might be interested in
Hellp.....its physics
blondinia [14]

Answer:

i know it

Explanation:

18.493 its the answer

brainliest pls

4 0
3 years ago
Read 2 more answers
What is the energy of a photon that has the same wavelength as an electron having a kinetic energy of 15 ev?
serg [7]

Answer: 6.268(10)^{-16}J

Explanation:

The kinetic energy of an electron K_{e} is given by the following equation:

K_{e}=\frac{(p_{e})^{2} }{2m_{e}}   (1)

Where:

K_{e}=15eV=2.403^{-18}J=2.403^{-18}\frac{kgm^{2}}{s^{2}}

p_{e} is the momentum of the electron

m_{e}=9.11(10)^{-31}kg  is the mass of the electron

From (1) we can find p_{e}:

p_{e}=\sqrt{2K_{e}m_{e}}    (2)

p_{e}=\sqrt{2(2.403^{-18}J)(9.11(10)^{-31}kg)}  

p_{e}=2.091(10)^{-24}\frac{kgm}{s}   (3)

Now, in order to find the wavelength of the electron \lambda_{e}   with this given kinetic energy (hence momentum), we will use the De Broglie wavelength equation:

\lambda_{e}=\frac{h}{p_{e}}    (4)

Where:

h=6.626(10)^{-34}J.s=6.626(10)^{-34}\frac{m^{2}kg}{s} is the Planck constant

So, we will use the value of p_{e} found in (3) for equation (4):

\lambda_{e}=\frac{6.626(10)^{-34}J.s}{2.091(10)^{-24}\frac{kgm}{s}}    

\lambda_{e}=3.168(10)^{-10}m    (5)

We are told the wavelength of the photon  \lambda_{p} is the same as the wavelength of the electron:

\lambda_{e}=\lambda_{p}=3.168(10)^{-10}m    (6)

Therefore we will use this wavelength to find the energy of the photon E_{p} using the following equation:

E_{p}=\frac{hc}{lambda_{p}}    (7)

Where c=3(10)^{8}m/s  is the spped of light in vacuum

E_{p}=\frac{(6.626(10)^{-34}J.s)(3(10)^{8}m/s)}{3.168(10)^{-10}m}  

Finally:

E_{p}=6.268(10)^{-16}J    

4 0
4 years ago
Q1 is located at the origin, Q2 is located at x = 2.50 cm and Q3 is located at x = 3.50 cm. Q1 has a charge of +4.92μC and Q3 ha
Inessa05 [86]

Answer:

+1.11\mu C

Explanation:

A charge located at a point will experience a zero electrostatic force if the resultant electric field on it due to any other charge(s) is zero.

Q_1 is located at the origin. The net force on it will only be zero if the resultant electric field intensity due to Q_2 and Q_3 at the origin is equal to zero. Therefore we can perform this solution without necessarily needing the value of Q_1.

Let the electric field intensity due to Q_2 be +E_2 and that due to Q_3 be -E_3 since the charge is negative. Hence at the origin;

+E_2-E_3=0..................(1)

From equation (1) above, we obtain the following;

E_2=E_3.................(2)

From Coulomb's law the following relationship holds;

+E_2=\frac{kQ_2}{r_2^2}\\  

-E_3=\frac{kQ_3}{r_3^2}

where r_2 is the distance of Q_2 from the origin, r_3 is the distance of Q_3 from the origin and k is the electrostatic constant.

It therefore means that from equation (2) we can write the following;

\frac{kQ_2}{r_2^2}=\frac{kQ_3}{r_3^2}.................(3)

k can cancel out from both side of equation (3), so that we finally obtain the following;

\frac{Q_2}{r_2^2}=\frac{Q_3}{r_3^2}................(4)

Given;

Q_2=?\\r_2=2.5cm=0.025m\\Q_3=-2.18\mu C=-2.18* 10^{-6}C\\r_3=3.5cm=0.035m

Substituting these values into equation (4); we obtain the following;

\frac{Q_2}{0.025^2}=\frac{2.18*10^{-6}}{0.035^2}\\\\hence;\\\\Q_2=\frac{0.025^2*2.18*10^{-6}}{0.035^2}\\

Q_2=\frac{0.00136*10^{-6}}{0.00123}=1.11*10^{-6}C\\\\Q_3=+1.11\mu C

6 0
3 years ago
Any help would be great! Thank you x<br><br><br> Giving brainliest answer xoxo
garri49 [273]

Answer:

A vacuum would have been created. I hope this helps have a great day

3 0
3 years ago
A two-slit Fraunhofer interference-diffraction pattern is observed with light of wavelength 672 nm. The slits have widths of 0.0
ololo11 [35]

Answer:

Explanation:

In case of diffraction , angular width of central maxima =2 λ/d

λ is wave length of light and d is slit width

In case of interference , angular width of each fringe

= λ /D

D is distance between two slits

No of interference fringe in central diffraction fringe

=2 λ/d x D/λ = 2 x D /d = 2 x .24/.03 = 16.

6 0
3 years ago
Other questions:
  • Who invented steam engine​
    13·2 answers
  • Which waves move by replacing one particle with another
    11·2 answers
  • Supervisors are subject to disciplinary action for engaging in retaliation.<br> True<br> False
    9·1 answer
  • A cube with sides of area 22 cm2 contains a 21.2 nanoCoulomb charge. Find the flux of the electric field through the surface of
    13·1 answer
  • A 22 kg sled is pushed for 5.2 m with a horizontal force of 20 N, starting from rest. ignore friction. find the final speed of t
    12·1 answer
  • All of the following are true for slow-motion sequences EXCEPT a. slow motion ritualizes movement. b. slow motion brings gracefu
    10·2 answers
  • A tire hanging from a tree is at rest. The force of gravity is pulling down on the tire. Another force, called tension, is pulli
    11·2 answers
  • In the Milky Way Galaxy, where would you expect to find the bulge?
    14·1 answer
  • Using EXACTLY 50 words write about why we study Geography<br><br> PLEASE HELP ME
    11·2 answers
  • Please help me!!!!! ​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!