Answer:
1470kgm²
Explanation:
The formula for expressing the moment of inertial is expressed as;
I = 1/3mr²
m is the mass of the body
r is the radius
Since there are three rotor blades, the moment of inertia will be;
I = 3(1/3mr²)
I = mr²
Given
m = 120kg
r = 3.50m
Required
Moment of inertia
Substitute the given values and get I
I = 120(3.50)²
I = 120(12.25)
I = 1470kgm²
Hence the moment of inertial of the three rotor blades about the axis of rotation is 1470kgm²
Answer:
0.65 kg*m/s and 0.165 kg*m/s
Explanation:
Step one:
given data
mass m= 0.5kg
initial velolcity u=1.3m/s
final velocity v= 0.97m/s
Required
The change in momentum
Step two:
We know that the expression for impulse is given as
Ft= mv
Ft= 0.5*1.3
Ft= 0.65 kg*m/s
The expression for the change in momentum is given as
P= mΔv
substitute
Pt= 0.5*(1.3-0.97)
Pt= 0.5*0.33
Pt=0.165 kg*m/s
Answer:
The final image relative to the converging lens is 34 cm.
Explanation:
Given that,
Focal length of diverging lens = -12.0 cm
Focal length of converging lens = 34.0 cm
Height of object = 2.0 cm
Distance of object = 12 cm
Because object at focal point
We need to calculate the image distance of diverging lens
Using formula of lens



The rays are parallel to the principle axis after passing from the diverging lens.
We need to calculate the image distance of converging lens
Now, object distance is ∞
Using formula of lens


The image distance is 34 cm right to the converging lens.
Hence, The final image relative to the converging lens is 34 cm.
Find how long it will take the fish to hit the ground
Unequal opposite forces.
(They're unbalanced.)