<span>So we want to know what is the direct effect of the gas particles if the force of their collision with the walls of the container is increased. Pressure, microscopically, is defined as the number of collisions per unit area. If we increase the force of the collision, the pressure increases so that is the direct effect. </span>
Answer:
Option B
Wire each room in parallel with the next.
Explanation:
By having parallel circuit, it creates more than one path for energy source. That means that even if one route has been closed by one neighbour, the energy source can get another path. One advantage of parallel connection is that even if one load goes out, the rest of the bulbs within the circuit are not affected. For parallel circuit, voltage remains constant every time a new load is added or removed since each load has its own path to the energy source and will receive full voltage. Therefore, the electrician should wire each room in parallel with the next.
Answer:
a) before immersion
C = εA/d = (8.85e-12)(25e-4)/(1.31e-2) = 1.68e-12 F
q = CV = (1.68e-12)(255) = 4.28e-10 C
b) after immersion
q = 4.28e-10 C
Because the capacitor was disconnected before it was immersed, the charge remains the same.
c)*at 20° C
C = κεA/d = (80.4*)(8.85e-12)(25e-4)/(1.31e-2) = 5.62e-10 F
V = q/C = 4.28e-10 C/5.62e-10 C = 0.76 V
e)
U(i) = (1/2)CV^2 = (1/2)(1.68e-12)(255)^2 = 5.46e-8 J
U(f) = (1/2)(5.62e-10)(0.76)^2 = 1.62e-10 J
ΔU = 1.62e-10 J - 5.46e-8 J = -3.84e-8 J
I believe it is away from his arm since the question states his arm is applying an upwards force