Answer:
A. ![11\frac{5}{8}\textrm{ inches}](https://tex.z-dn.net/?f=11%5Cfrac%7B5%7D%7B8%7D%5Ctextrm%7B%20inches%7D)
Step-by-step explanation:
Given:
The regular polygon is a decagon having 10 sides.
Perimeter of the given polygon is,
.
We know that, perimeter of a regular polygon of
sides is given as,
where,
is the length of each side.
Here, ![n=10,P=116\frac{1}{4}\textrm{ in}](https://tex.z-dn.net/?f=n%3D10%2CP%3D116%5Cfrac%7B1%7D%7B4%7D%5Ctextrm%7B%20in%7D)
Plug in these values and solve for
. This gives,
![P=na\\116\frac{1}{4}=10a\\116.25=10a\\a=\frac{116.25}{10}=11.625=11+\frac{625}{1000}=11+\frac{5}{8}=11\frac{5}{8}\textrm{ in}](https://tex.z-dn.net/?f=P%3Dna%5C%5C116%5Cfrac%7B1%7D%7B4%7D%3D10a%5C%5C116.25%3D10a%5C%5Ca%3D%5Cfrac%7B116.25%7D%7B10%7D%3D11.625%3D11%2B%5Cfrac%7B625%7D%7B1000%7D%3D11%2B%5Cfrac%7B5%7D%7B8%7D%3D11%5Cfrac%7B5%7D%7B8%7D%5Ctextrm%7B%20in%7D)
Therefore, the side length of the given polygon is ![11\frac{5}{8}\textrm{ inches}](https://tex.z-dn.net/?f=11%5Cfrac%7B5%7D%7B8%7D%5Ctextrm%7B%20inches%7D)