Answer:
Photon of light
Explanation:
According to Bohr's model of the atom, electrons in atoms are found in specific energy levels. These energy levels are called stationary states, an electrons does not radiate energy when it occupies any of these stationary states.
However, an electron may absorb energy and move from one energy level or stationary state to another. The energy difference between the two energy levels must correspond to the energy of the photon of light absorbed in order to make the transition possible.
Since electrons are generally unstable in excited states, the electron quickly jumps back to ground states and emits the excess energy absorbed. The frequency or wavelength of the emitted photon can now be measured and used to characterize the transition. This is the principle behind many spectrometric and spectrophotometric methods.
In finding the molarity of a solution, we use the following formula:

What is Molarity?
The number of moles of the solute is calculated by dividing the mass of the solute by its molar mass.
<h3 />
The molar mass of NH4NO3 and (NH4)3PO4 are 80.043 g/mol and 149.0867 g/mol, respectively.




![[NH+4]=0.1596 mol20.0 L=7.98×10−3 M NH+4](https://tex.z-dn.net/?f=%5BNH%2B4%5D%3D0.1596%20mol20.0%20L%3D7.98%C3%9710%E2%88%923%20M%20NH%2B4)
![[PO3−4]=0.0296 mol20.0 L=1.48×10−3 M PO3−4](https://tex.z-dn.net/?f=%5BPO3%E2%88%924%5D%3D0.0296%20mol20.0%20L%3D1.48%C3%9710%E2%88%923%20M%20PO3%E2%88%924)
Therefore,
has a molarity of 
To learn more about Molarity click on the link below:
brainly.com/question/19943363
#SPJ4
Answer:
If two atoms get close enough together then the electrons of each atom will be attracted to both nuclii
Explanation: