In an endothermic reaction products are <u>HIGHER </u>than reactants in potential energy and <u>LESS </u>stable.
Explanation:
Energy is input into the reaction in an endothermic reaction. This means the products are of a higher energy level than the reactants. Therefore the reaction increases Gibb's free energy and reduces entropy. Remember in thermodynamic stability involves an increase in entropy and a decrease in Gibbs free energy. Therefore the products are less stable than the reactants. This is why endothermic reactions do not occur spontaneously like exothermic reactions.
Answer:
Boron
Explanation:
You can find this by looking at the number of protons in Boron, 5.
Then calculate how many electrons you are given, in this case the 2 core plus the 3 valence equal 5 total electrons
Neutral elements have the same number of protons and electrons, so your answer would be the element with 5 electrons, Boron.
You can also know this by using electron configuration. Since you kow there are 5 electrons then you can use EC to find out where your element is. In this case it is: 1s2 2s2 2p1
If uranium-241 lost 2 protons and 2 neutrons, then thorium-237 would be produced. The number beside the element is the mass number which is the sum of protons and neutrons. If uranium would lose 2 protons and 2 neutrons, then the mass number would decrease by 4 making it 237. Looking in a periodic table, thorium is the element which has a mass number of 237.
Answer:
C: electrons is the 3s orbital are higher than those in the 2s orbital
Explanation:
Looking at the options, the correct one is that the electrons in the 3s orbital will possess more energy than those in the 2s orbital. This is because the the 2s orbitals will be filled with electrons first before the 3s orbital.
Also from basics we know that the energy of an orbital increases as the quantum number increases.