Step-by-step explanation:
Q1 . (f+g)(x) = f(x) + g(x)
=4x-4 +2x^2 -3x
= 2x^2 + x -4
Q2. (f-g)(x) = f(x) - g(x)
= 2x^2−2 - (4x+1)
= 2x^2 -2 -4x -1
= 2x^2 - 4x -3
Q3. h(x)=3x−3 and g(x)=x^2+3
(h.g)(x) = h(x) × g(x)
= (3x-3) × (x^2 + 3)
=3x^3 -3x^2 + 9x -9
Q4.f(x)=x+4 and g(x)=x+6
(f/g)(x) = f(x) ÷ g(x)
= x+4 / x+6
the domain restriction is x>-6
x<-6
x doesn't equal (-6)
: Let y = f(x) = x^1/3
Then dy = 1/3*x^(−2/3) dx
Since f(64) = 4.
We take x = 64 and dx = ∆x = 1
This gives dy = 1/3*(64)^(−2/3)* (1) = 1/48
∴65^(1/3) = f(64 + 1) ≈ f(64) + dy = 4 + 1/48 ≈ 4.021 <span>
</span>
i think that that the answer is 13 Step-by-step explanation:
It may be a special right triangle which would make the angles 45, 45, and 90