Answer:
pH= 9.2
Explanation:
Henderson hasselbach equation
pKa= log Ka= log (4.9 x 10^-10)=9.3
![pH=Pka+log \frac{[A-]}{[HA]}](https://tex.z-dn.net/?f=pH%3DPka%2Blog%20%5Cfrac%7B%5BA-%5D%7D%7B%5BHA%5D%7D)
![pH=9.3+log \frac{[CN-]}{[HCN]}](https://tex.z-dn.net/?f=pH%3D9.3%2Blog%20%5Cfrac%7B%5BCN-%5D%7D%7B%5BHCN%5D%7D)
![pH=9.3+log \frac{[0.64 M]}{[0.83 M]}](https://tex.z-dn.net/?f=pH%3D9.3%2Blog%20%5Cfrac%7B%5B0.64%20M%5D%7D%7B%5B0.83%20M%5D%7D)
pH= 9.2
The atomic size / radius generally increases, as when we move down the group, it means that there is an additional shell compared to the last element. For example, K has one more electron shell than Na does, so the atomic size generally increases as we move down a group in the periodic table.
The wave will have a frequency that is larger
Ethylene is the starting material for the preparation of a number of two-carbon compounds including ethanol (industrial alcohol), ethylene oxide (converted to ethylene glycol for antifreeze and polyester fibres and films), acetaldehyde (converted to acetic acid), and vinyl chloride (converted to polyvinyl chloride).