For the given reaction, according to the Law of Conservation of Energy, the energy required to decompose Hcl and produce
are equal.
Answer: Option C
<u>Explanation:</u>
According to law of conservation's of energy, energy can only be transferred from reactants to product side. So in this process, it is stated that 185 kJ of energy will be needed to decompose it. So that 185 kJ of energy will be getting transferred to produce the creation of hydrogen and chloride in the product side.
So if we see from the reactants side, the energy of 185 kJ is required for decomposition of hydrogen chloride. Similarly, if we see from the product side, the 185 kJ utilized for decomposition is transferred as energy required to create hydrogen and chlorine atoms. This statement will be in accordance with the law of conservation's of energy.
Answer:
C. Dissecting microscope
Explanation:
It is trying to see the surface
Given reactions:
(A) 6CO2(g) + 6H2O(l) + sunlight → C6H12O6(aq) + 6O2(g)
(B) 2H2(g) + O2(g) → 2H2O(g) + energy
Exothermic reactions are those which proceed with the release of heat/energy. In contrast, endothermic reactions proceed with the absorption of energy in the form of heat or light.
Since reaction A required sunlight, it is endothermic. Reaction B releases energy, hence exothermic
Ans: (B)
A is endothermic
B is exothermic
Al(NO3)3(aq) + 3NaOH(s) --> Al(OH)3 (s) + 3NaNO3 (aq)
The precipitate here is Al(OH)3 (s), since the solid reactant is the precipitate in the aqueous solution. Usually, it is okay to assume in basic chemistry that the transition metal is going to be part of the compound that is the precipitate, especially in an acidic salt and a strong base reaction that we have here.
7.5 is the answer. You have to move the decimal 2 places to the right.