Answer:
Mass of C₂H₄N₂ produced = 3.64 g
Explanation:
The balanced chemical equation for the reaction is given below:
3CH₄ (g) + 5CO₂ (g) + 8NH₃ (g) → 4C₂H₄N₂ (g) + 10H₂O (g)
From the equation, 3 moles of CH₄ reacts with 5 moles of CO₂ and 8 moles of NH₃ to produce 4 moles of C₂H₄N₂ and 10 moles of H₂O
Molar masses of the compounds are given below below:
CH₄ = 16 g/mol; CO₂ = 44 g/mol; NH3 = 17 g/mol; C₂H₄N₂ = 56 g/mol; H₂O g/mol
Comparing the mole ratios of the reacting masses;
CH₄ = 1.65/16 = 0.103
CO₂ = 13.5/44 = 0.307
NH₃ = 2.21/17 = 0.130
converting to whole number ratios by dividing with the smallest ratio
CH₄ = 0.103/0.103 = 1
CO₂ = 0.307/0.103 = 3
NH₃ = 0.130/0.103 = 1.3
Multiplying through with 5
CH₄ = 1 × 5 = 5
CO₂ = 3 × 5 = 15
NH₃ = 1.3 × 5 = 6.5
Therefore, the limiting reactant is NH₃
8 × 17 g (136 g) of NH₃ reacts to produce 4 × 56 g (224 g) of C₂H₄N₂
Therefore, 2.21 g of NH₃ will produce (2.21 × 224)/136 g of C₂H₄N₂ = 3.64 g of C₂H₄N₂
Mass of C₂H₄N₂ produced = 3.64 g
Answer:
Water has a higher boiling point because the hydrogen bonds that form water molecules are stronger than the Van der Waals interactions among methane molecules, therefor more energy must be provided in order to break the hydrogen bonds and allow the water molecules to escape the liquid state.
Explanation:
C I believe it is and I think that because I got it right
Answer:
A.. 0.1 gram this means 0.0001kg of the object in SI unit
b. 0.01 meter this means 1 / 10 of 1 meter of the measurement
c. 0.000001 liter this means 1/10000 of the quality of liquid in SI unit
e. 1000 000 grams.this means 1000kg of the object in IS unit
L. 10 meters this means 10 times one meter of the measurement in SI unit
Answer:
[Ag+] = [NO3-] = 0.700M
0.555M = [Na+] = [I-]
Explanation:
To solve this question we need to find the moles of sodium iodide, NaI, using its molar mass -. With the moles and the volume we can find the molarity of Na+ and I-. The molarity of the ions of silver nitrate, AgNO3 doesn't change because we are assuming the volume doesn't change:
<em>Molarity Ag⁺ = Molarity NO₃⁻ = 0.700M</em>
<em>Moles NaI -Molar mass: 149.89g/mol-</em>
20.8g NaI * (1mol/149.89g) = 0.0139 moles NaI
<em>Molarity:</em>
0.0139 moles NaI / 0.250L = <em>0.555M = [Na+] = [I-]</em>