The Average atomic weight of X is 28.7amu
Isotopes are atoms with the same number of protons but differing numbers of neutrons.
Different isotopes have various atomic masses.
The proportion of atoms with a particular atomic mass that can be found in a naturally occurring sample of an element is known as the relative abundance of an isotope.
An element's average atomic mass is computed as a weighted average by multiplying the relative abundances of its isotopes by their respective atomic masses, then adding the resulting products.
Using mass spectrometry, it is possible to determine the relative abundance of each isotope.
The atomic weight of the element will be a weighted average of the isotopes based on the relative abundance:
(27.730 x 0.6058) + (28.841 x 0.1835) + (31.321 x 0.2107) = 16.7988 + 5.2923+ 6.599 = 28.690 = 28.7 amu.
Average atomic weight of X is 28.7amu
Learn more about Average Atomic Weight here
brainly.com/question/6200158
#SPJ4
"Only 2 molecules" of ATP <span>produced during the citric acid cycle
Hope this helps!
</span>
Answer:
1.51367e+10 inches
Explanation:
1 mile = 63360
63360 x 238900 = 15136704000
Hope this helped!
Filter flasks are
also known as vacuum, suction or the Buchner flasks. They have thick walls and also
have a short glass tube. The thick walls are designed to enable the filter withstand
high pressures of vacuum applied to filter substances. Generally this is used
for filtering.
While the Erlenmeyer flask
also called as a conical flask, is a titration flask which consists of a
conical body, a flat bottom, and round neck. This is used for used for general
uses such as mixing, titrations, preparation of cultures, for
recrystallization, and for supporting filter funnels.
<span>Lastly, the Volumetric flasks are graduated flasks which having markings
for different volumes. They are calibrated accurately for a specific amount of
liquid that can be contained in it hence this is specially used for storing
precise amounts of liquid. </span>