Answer:
p3=0.36atm (partial pressure of NOCl)
Explanation:
2 NO(g) + Cl2(g) ⇌ 2 NOCl(g) Kp = 51
lets assume the partial pressure of NO,Cl2 , and NOCl at eequilibrium are P1 , P2,and P3 respectively
![Kp=\frac{[NOCl]^{2} }{[NO]^{2} [Cl_2] }](https://tex.z-dn.net/?f=Kp%3D%5Cfrac%7B%5BNOCl%5D%5E%7B2%7D%20%7D%7B%5BNO%5D%5E%7B2%7D%20%5BCl_2%5D%20%7D)
![Kp=\frac{[p3]^{2} }{[p1]^{2} [p2] }](https://tex.z-dn.net/?f=Kp%3D%5Cfrac%7B%5Bp3%5D%5E%7B2%7D%20%7D%7B%5Bp1%5D%5E%7B2%7D%20%5Bp2%5D%20%7D)
p1=0.125atm;
p2=0.165atm;
p3=?
Kp=51;
On solving;
p3=0.36atm (partial pressure of NOCl)
The balanced chemical reaction is:
2HCl + Ca = CaCl2 + H2
We are given the amount of the reactants to be used for the reaction. These values will be the starting point of our calculations.
100 g HCl ( 1 mol HCl / 36.46 g HCl ) = 2.74 mol HCl
100 g Ca ( 1 mol Ca / 40.08 g ) = 2.08 mol Ca
From the reaction, the mole ratio of the reactants is 2:1 where every 2 moles of hydrochloric acid, 1 mole of calcium is required. Therefore, the limiting reactant for this case is calcium.
Strontium and chlorine react to form strontium chloride with the formula SrCl2.
When the temperature increases, warms, or heats up the molecules become excited. Their movement becomes faster and they tend to move far apart from other molecules.