1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andru [333]
3 years ago
14

What happens to a light wave when it travels from air into glass?

Physics
1 answer:
tino4ka555 [31]3 years ago
7 0
Light is refracted when it crosses the interface from air to glass in which it moves more slowly.
Since the light speed changes at the interface, the wave length of the light must change too. The wave length decreases as the light enter the medium and the light wave changes direction.
You might be interested in
If I push a box at a constant rate is there friction force acting on it?
yanalaym [24]
Yes, the friction is acting in the opposite direction you are pushing.
3 0
3 years ago
In nuclear reaction 5 kg of reactants give 2kg of products
dlinn [17]
Choice A is correct.======Kinetic energy equation:   KE = (1/2)(m)(v²)This tells us that KE is directly proportional to mass and the square of velocity. In other words, the more mass and more velocity an object has, the more kinetic energy.If an object is sitting at the top of a ramp, there is no velocity and therefore no kinetic energy.    Choices B and D are wrong.A golf ball has more mass than a ping-pong ball, so a ping-pong ball would have less kinetic energy than a golf ball rolling off the end of a ramp.    Choice C is wrong.Choice A is correct.


6 0
3 years ago
A window washer who does not want to change his position will want the forces acting on him to be ____________.
natali 33 [55]
My answer is a balanced
6 0
3 years ago
Having difficulty finding the PE and KE for these values no mass is given. Does anyone know to go solve these?
Alexandra [31]

11) 1.04\cdot 10^7 J

12) 1.04\cdot 10^7 J

13) 50.0 m/s

14) 41.6 m/s

Explanation:

11)

The potential energy of an object is the energy possessed by the object due to its position relative to the ground. It is given by

PE=mgh

where

m is the mass of the object

g is the acceleration due to gravity

h is the height relative to the ground

Here in this problem, when the train is at the top, we have:

m = 8325 kg (mass of the train + riders)

g=9.8 m/s^2 (acceleration due to gravity)

h = 127 m (height of the train at the top)

Substituting,

PE=(8325)(9.8)(127)=1.04\cdot 10^7 J

12)

According to the law of conservation of energy, the total mechanical energy of the train must be conserved (in absence of friction). So we can write:

KE_t + PE_t = KE_b + PE_b

where

KE_t is the kinetic energy at the top

PE_t is the potential energy at the top

KE_b is the kinetic energy at the bottom

PE_b is the potential energy at the bottom

The kinetic energy is the energy due to motion; since the train is at rest at the top, we have

KE_t=0

Also, at the bottom the height is zero, so the potential energy is zero

PE_b=0

Therefore, we find:

KE_b=PE_t=1.04\cdot 10^7 J

13)

The kinetic energy of an object is the energy of the object due to its motion. Mathematically, it is given by

KE=\frac{1}{2}mv^2

where

m is the mass of the object

v is the speed of the object

From question 12), we know that the kinetic energy of the train at the bottom is

KE=1.04\cdot 10^7 J

We also know that the mass is

m = 8325 kg

Therefore, we can calculate the speed of the train at the bottom:

v=\sqrt{\frac{2KE}{m}}=\sqrt{\frac{2(1.04\cdot 10^7)}{8325}}=50.0 m/s

14)

At the top of the second hill, the total mechanical energy of the train is still conserved.

Therefore, we can write again:

KE_1 + PE_1 = KE_2 + PE_2

where

KE_1 is the kinetic energy at the top of the 1st hill

PE_1 is the potential energy at the top of the 1st hill

KE_2 is the kinetic energy at the top of the 2nd hill

PE_2 is the potential energy at the top of the 2nd hill

From the previous questions, we know that

KE_1=0

and

PE_1=1.04\cdot 10^7 J

The height of the second hill is

h = 39 m

So we can also find the potential energy at the second hill:

PE_2=mgh=(8325)(9.8)(39)=3.2\cdot 10^6 J

So, the kinetic energy at the second hill is

KE_2=PE_1-PE_2=1.04\cdot 10^7 - 3.2\cdot 10^6 =7.2\cdot 10^6 J

And so, the speed is

v=\sqrt{\frac{2KE_2}{m}}=\sqrt{\frac{2(7.2\cdot 10^6)}{8325}}=41.6 m/s

4 0
3 years ago
What is the acceptable level for chlorine
Katena32 [7]
The EPA requires treated tap water<span> to have a detectable </span>level of chlorine<span> to help prevent contamination. The allowable </span>chlorine <span>in </span>drinking water<span> (up to 4 parts per million) pose “no known or expected health risk [including] an adequate margin of safety.”</span>
8 0
3 years ago
Other questions:
  • When people use plastic combs on their hair, the combs become negatively charged. Which statements about this situation are true
    10·2 answers
  • A 4.00 µf capacitor is connected to a 12.0 v battery.
    6·2 answers
  • There is a large box and a small box on a table. The same force is applied to both boxes. The large box moves two feet and the s
    8·2 answers
  • Which objects have the most similar eccentricities?
    11·2 answers
  • __________ is the gradual increase in the temperature of earth’s atmosphere. greenhouse effect air pollution global warming temp
    12·2 answers
  • WILL GIVE BRAINLIEST!
    13·1 answer
  • If a golf ball is dropped from the thirteenth floor of a building, ignoring air resistance, after falling for 7.00 seconds the s
    13·1 answer
  • An empty container has a mass of 3 g. When it is filled with 5 cm3 of a liquid,
    9·1 answer
  • The oscillating electric field in a plane electromagnetic wave is given by <img src="https://tex.z-dn.net/?f=%7B50%5Csin%20%28%5
    8·1 answer
  • A boat is stationary at 12 meters away from a dock. The boat then begins to move toward the dock with
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!