All of the elements in a period have the same number of atomic orbitals. For example, every element in the top row (the first period) has one orbital for its electrons. All of the elements in the second row (the second period) have two orbitals for their electrons. As you move down the table, every row adds an orbital.
Answer: 0.9264 kg
Explanation: [I'll use "cc" for cubic centimeter, instead of cm^3.
The volume is 6cm*4cm*2cm = 48 cm^3 (cc).
Density of Au is 19.3 g/cc
Mass of gold = (48 cc)*(9.3 g/cc) = 926.4 grams Au
1 kg = 1,000 g
(926.4 grams Au)*(1 kg/1,000 g) = 0.9264 kg, 0.93 kg to 2 sig figs
At gold's current price of $57,500/kg, this bar is worth $53,268. Keep it hidden from your lab partner (and instructor).
<span>For this example, the value presented would be considered a statistic. The value is a statistic as it represents a numerical measurement of a sample. If it were a parameter, it would need to represent a numerical measurement of a population.</span>
The answer would most likely be A since obviously gravity weighs things down which helps the every other masses stay settled in place
Blood
I learned this in anatomy, and I've taken it twice