Answer:
B. The elastic portion of a straight-line, downward-sloping demand curve corresponds to the segment above the midpoint.
Explanation:
Elasticity measures the sensitivity of one variable to another. Specifically it is a figure that indicates the percentage variation that a variable will experience in response to a variation of another one percent.
The elasticity of demand measures the reaction of demand when one of the factors that affects it varies.
<u>Elasticity - Price of demand.</u>
easure the sensitivity of the quantity demanded to price variations. It indicates the percentage variation that the quantity demanded of a good will experience if its price rises by 1 percent.
<u>
Elastic Demand
</u>
The demand quantity is relatively sensitive to price variations, so the total expenditure on the product decreases when the price rises, the price elasticity takes value greater than -∞ but less than -1
Answer:
18.24 seconds
Explanation:
First you convert the km/h to m/s, 70km/h=(175/9)m/s,85km/h=(425/18)m/s.
You know it took 10 seconds for the police to reach 85 km/h. Calculate the distance that the car is ahead of the police (175/9)*10=1750/9m. Then by divide 1750/9 with 425/18, you will get the value 8.24. Add the 10 seconds with the 8.24 you will get 18.24 sec which is the total time.
Answer:
Points downward, and its magnitude is 9.8 m/s^2
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform horizontal motion, with constant velocity and zero acceleration. In fact, there are no forces acting on the projectile along the horizontal direction (if we neglect air resistance), so the acceleration along this direction is zero.
- A vertical motion, with constant acceleration g = 9.8 m/s^2 towards the ground (downward), due to the presence of gravity wich "pulls" the projectile downward.
The total acceleration of the projectile is given by the resultant of the horizontal and vertical components of the acceleration. But we said that the horizontal component is zero, therefore the total acceleration corresponds just to its vertical component, therefore it is a vector with magnitude 9.8 m/s^2 which points downward.
Answer:
Approximate escape speed = 45.3 km/s
Explanation:
Escape speed

Here we have
Gravitational constant = G = 6.67 × 10⁻¹¹ m³ kg⁻¹ s⁻²
R = 1 AU = 1.496 × 10¹¹ m
M = 2.3 × 10³⁰ kg
Substituting

Approximate escape speed = 45.3 km/s
A. Moving with constant non-zero speed