1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mkey [24]
2 years ago
7

Having difficulty finding the PE and KE for these values no mass is given. Does anyone know to go solve these?

Physics
1 answer:
Alexandra [31]2 years ago
4 0

11) 1.04\cdot 10^7 J

12) 1.04\cdot 10^7 J

13) 50.0 m/s

14) 41.6 m/s

Explanation:

11)

The potential energy of an object is the energy possessed by the object due to its position relative to the ground. It is given by

PE=mgh

where

m is the mass of the object

g is the acceleration due to gravity

h is the height relative to the ground

Here in this problem, when the train is at the top, we have:

m = 8325 kg (mass of the train + riders)

g=9.8 m/s^2 (acceleration due to gravity)

h = 127 m (height of the train at the top)

Substituting,

PE=(8325)(9.8)(127)=1.04\cdot 10^7 J

12)

According to the law of conservation of energy, the total mechanical energy of the train must be conserved (in absence of friction). So we can write:

KE_t + PE_t = KE_b + PE_b

where

KE_t is the kinetic energy at the top

PE_t is the potential energy at the top

KE_b is the kinetic energy at the bottom

PE_b is the potential energy at the bottom

The kinetic energy is the energy due to motion; since the train is at rest at the top, we have

KE_t=0

Also, at the bottom the height is zero, so the potential energy is zero

PE_b=0

Therefore, we find:

KE_b=PE_t=1.04\cdot 10^7 J

13)

The kinetic energy of an object is the energy of the object due to its motion. Mathematically, it is given by

KE=\frac{1}{2}mv^2

where

m is the mass of the object

v is the speed of the object

From question 12), we know that the kinetic energy of the train at the bottom is

KE=1.04\cdot 10^7 J

We also know that the mass is

m = 8325 kg

Therefore, we can calculate the speed of the train at the bottom:

v=\sqrt{\frac{2KE}{m}}=\sqrt{\frac{2(1.04\cdot 10^7)}{8325}}=50.0 m/s

14)

At the top of the second hill, the total mechanical energy of the train is still conserved.

Therefore, we can write again:

KE_1 + PE_1 = KE_2 + PE_2

where

KE_1 is the kinetic energy at the top of the 1st hill

PE_1 is the potential energy at the top of the 1st hill

KE_2 is the kinetic energy at the top of the 2nd hill

PE_2 is the potential energy at the top of the 2nd hill

From the previous questions, we know that

KE_1=0

and

PE_1=1.04\cdot 10^7 J

The height of the second hill is

h = 39 m

So we can also find the potential energy at the second hill:

PE_2=mgh=(8325)(9.8)(39)=3.2\cdot 10^6 J

So, the kinetic energy at the second hill is

KE_2=PE_1-PE_2=1.04\cdot 10^7 - 3.2\cdot 10^6 =7.2\cdot 10^6 J

And so, the speed is

v=\sqrt{\frac{2KE_2}{m}}=\sqrt{\frac{2(7.2\cdot 10^6)}{8325}}=41.6 m/s

You might be interested in
(a) If a proton with a kinetic energy of 6.2 MeV is traveling in a particle accelerator in a circular orbit with a radius of 0.5
Tju [1.3M]

Answer:

The fraction of its energy that it radiates every second is 3.02\times10^{-11}.

Explanation:

Suppose Electromagnetic radiation is emitted by accelerating charges. The rate at which energy is emitted from an accelerating charge that has charge q and acceleration a is given by

\dfrac{dE}{dt}=\dfrac{q^2a^2}{6\pi\epsilon_{0}c^3}

Given that,

Kinetic energy = 6.2 MeV

Radius = 0.500 m

We need to calculate the acceleration

Using formula of acceleration

a=\dfrac{v^2}{r}

Put the value into the formula

a=\dfrac{\dfrac{1}{2}mv^2}{\dfrac{1}{2}mr}

Put the value into the formula

a=\dfrac{6.2\times10^{6}\times1.6\times10^{-19}}{\dfrac{1}{2}\times1.67\times10^{-27}\times0.51}

a=2.32\times10^{15}\ m/s^2

We need to calculate the rate at which it emits energy because of its acceleration is

\dfrac{dE}{dt}=\dfrac{q^2a^2}{6\pi\epsilon_{0}c^3}

Put the value into the formula

\dfrac{dE}{dt}=\dfrac{(1.6\times10^{-19})^2\times(2.3\times10^{15})^2}{6\pi\times8.85\times10^{-12}\times(3\times10^{8})^3}

\dfrac{dE}{dt}=3.00\times10^{-23}\ J/s

The energy in ev/s

\dfrac{dE}{dt}=\dfrac{3.00\times10^{-23}}{1.6\times10^{-19}}\ J/s

\dfrac{dE}{dt}=1.875\times10^{-4}\ ev/s

We need to calculate the fraction of its energy that it radiates every second

\dfrac{\dfrac{dE}{dt}}{E}=\dfrac{1.875\times10^{-4}}{6.2\times10^{6}}

\dfrac{\dfrac{dE}{dt}}{E}=3.02\times10^{-11}

Hence, The fraction of its energy that it radiates every second is 3.02\times10^{-11}.

5 0
2 years ago
A proton, an electron, and a helium nucleus all move at speed v. Rank their de Broglie wavelengths from largest to smallest. Wri
MatroZZZ [7]

Answer:

The correct option is 'c':electron,proton,helium nucleus

Explanation:

The De-Broglie's wavelength of particle is given by

\lambda =\frac{h}{mv}

Thus we can see that wavelength is inversely related to mass of the particle since 'h' (Plank's constant) and velocity is same for all the particles  

Thus we conclude that the the lightest particle will have the most wavelength

Electron being the lightest of the 3 particles will have the largest wavelength thus the correct option is 'c'. Since electron has the largest wavelength followed by proton and the least wavelength among the 3 is of helium.

6 0
3 years ago
Help me guys plzzzzzzzzz
elena-s [515]
Tsunami? I think so maybe it’s right
5 0
2 years ago
What is the change in potential energy with respect to the ground of a 0.55 g son of a leech (a very effective fly for steelhead
IceJOKER [234]

Answer:

We will use Potential Energy Formula

Potential Energy = mass × gravitation × height

PE = 0,55 × 10 × 4

PE = 22 J (A)

5 0
2 years ago
A wave in which particles of the medium move at right angles to the direction of the wave is called a
Licemer1 [7]

Answer:

transverse wave: A wave in which particles of the medium move at right angles to the direction of the wave is called a transverse wave.

5 0
3 years ago
Other questions:
  • A mass is tied to a string and swung in a horizontal circle with a constant angular speed. show answer No Attempt If this speed
    11·1 answer
  • 1. what are valence electrons?
    11·2 answers
  • A cart with mass m vibrating at the end of a spring has an extra block added to it when its displacement is x=+A. What should th
    7·1 answer
  • Sphere A of mass 0.600 kg is initially moving to the right at 4.00 m/s. sphere B, of mass 1.80 kg is initially to the right of s
    12·1 answer
  • What is the strength of the electric field ep 0.90 mm from a proton?
    5·1 answer
  • Some of the largest volcanoes in the solar system are on mars. The most likely explanation is that mars
    15·1 answer
  • Two people on skateboards, Brian and Amy, push off from each other. Brian has more mass than Amy. Who experiences a larger force
    7·1 answer
  • A student sects a leaf of length 7.2 cm to draw. Her drawing is 28.8 cm in length. What is the magnification of the drawing?
    8·1 answer
  • A tennis ball, 0.314kg, is accelerated at a rate of 164m/s2 when hit by a professional tennis player. What force does the player
    6·1 answer
  • What is friction and its types? ​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!