Answer:
Lineal.
Step-by-step explanation:
To determine if the sequence 4,10,20,34,52 ....... is a linear model, a quadratic model or a cubic model, the following mathematical logical reasoning must be carried out:
4 to 10 = +6
10 to 20 = +10
20 to 34 = +14
34 to 52 = +18
Thus, we can see at a glance that the sequence increases 4 numbers in each digit, adding first 6, then 10, then 14 and so on, with which the next numbers in that sequence should be 74 (+22), 100 ( +26), 130 (+30), 164 (+34), and so on.
Therefore, since there is no quadratic or cubic relationship, the sequence is linear.
hello :<span>
<span>an equation of the circle Center at the
A(a,b) and ridus : r is :
(x-a)² +(y-b)² = r²
in this exercice : a =0 and b = 0 (Center at the origin)
r = OP....p(-8,3)
r² = (OP)²
r² = (-8-0)² +(3-0)² = 64+9=73
an equation of the circle that satisfies the stated conditions.
Center at the origin, passing through P(-8, 3) is : x² +y² = 73</span></span>
2. Each side of a pentagon is the same size.
4cm x 5 = 20cm or 4cm+4cm+4cm+4cm+4cm = 20cm
3. Each side of a square is the same size.
13yd x 4 = 52yd or 13yd+13yd+13yd+13yd = 52yd
4. Add all sides together.
12m+12m+30m+30m = 84m
5. Again add all sides together.
16yd+16yd+4yd+4yd = 40yd
6. Each side of a square is the same size.
7in x 4 = 28in. or 7in+7in+7in+7in = 28in
7. Add all sides together.
2cm+2cm+3cm+3cm = 10cm
8. Each side of a rhombus is the same size. A rhombus has 4 sides.
23in x 4 = 92in or 23in+23in+23in+23in = 92in
9. A regular octagon has 8 sides and each side is the same size.
9cm x 8 = 72cm
Answer:
4-4=0
16-6-10=0
17-3-4-10=0
1-2+1=0
Step-by-step explanation:
So, the definite integral 
Given that
We find

<h3>Definite integrals </h3>
Definite integrals are integral values that are obtained by integrating a function between two values.
So, 
So, ![\int\limits^1_0 {(4 - 6x^{2} )} \, dx = \int\limits^1_0 {4} \, dx - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - 6\int\limits^1_0 {x^{2} } \, dx \\= 4[1 - 0] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4[1] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4 - 6\int\limits^1_0 {x^{2} } \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E1_0%20%7B%284%20-%206x%5E%7B2%7D%20%29%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5E1_0%20%7B4%7D%20%5C%2C%20dx%20-%20%5Cint%5Climits%5E1_0%20%7B6x%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%20%204%5Bx%5D%5E%7B1%7D_%7B0%7D%20%20%20%20-%20%5Cint%5Climits%5E1_0%20%7B6x%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%20%204%5Bx%5D%5E%7B1%7D_%7B0%7D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%204%5B1%20-%200%5D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%5C%5C%3D%204%5B1%5D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%5C%5C%3D%204%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx)
Since
,
Substituting this into the equation the equation, we have

So, 
Learn more about definite integrals here:
brainly.com/question/17074932