Answer:
p1 = $259.53 p2 = $381.20
Explanation:
1. Find the revenue function.
This is a typical income maximization problem. Therefore, the first thing we should know is what are the revenues for each product.
Recall that the revenue is given by P * Q
1.a Find the revenue of the Ultra Mini (product 1):
![R_{1} = P_{1} Q_{1}](https://tex.z-dn.net/?f=R_%7B1%7D%20%3D%20P_%7B1%7D%20Q_%7B1%7D)
![R_{1} =P_{1} (100,000 - 200P_{1} + 10P_{2} )](https://tex.z-dn.net/?f=R_%7B1%7D%20%3DP_%7B1%7D%20%28100%2C000%20-%20200P_%7B1%7D%20%2B%2010P_%7B2%7D%20%29)
![R_{1} =100,000P_{1} -200P_{1} ^{2} +10P_{2}P_{1}](https://tex.z-dn.net/?f=R_%7B1%7D%20%3D100%2C000P_%7B1%7D%20-200P_%7B1%7D%20%5E%7B2%7D%20%2B10P_%7B2%7DP_%7B1%7D)
1.b Find the revenue of the Big Stack (product 2):
![R_{2} = P_{2} Q_{2}](https://tex.z-dn.net/?f=R_%7B2%7D%20%3D%20P_%7B2%7D%20Q_%7B2%7D)
![R_{2} =P_{2} (150,000 + 10P_{1} - 200P_{2} )](https://tex.z-dn.net/?f=R_%7B2%7D%20%3DP_%7B2%7D%20%28150%2C000%20%2B%2010P_%7B1%7D%20-%20200P_%7B2%7D%20%29)
![R_{2} = 150,000P_{1+2} +10P_{1}P_{2} -200P_{2}^{2}](https://tex.z-dn.net/?f=R_%7B2%7D%20%3D%20150%2C000P_%7B1%2B2%7D%20%2B10P_%7B1%7DP_%7B2%7D%20-200P_%7B2%7D%5E%7B2%7D)
2. Find the marginal revenues.
The revenue function must be derived from the price.
For product 1, we derive from P1:
![MR_{1} = 100,000 -400P_{1} +10P_{2}](https://tex.z-dn.net/?f=MR_%7B1%7D%20%3D%20100%2C000%20-400P_%7B1%7D%20%2B10P_%7B2%7D)
For product 2, we derive from P2:
![MR_{2} = 150,000 + 10P_{1} - 400P_{2}](https://tex.z-dn.net/?f=MR_%7B2%7D%20%3D%20150%2C000%20%2B%2010P_%7B1%7D%20-%20400P_%7B2%7D)
3. Create a system of linear equations in two unknowns
With the marginal revenue functions we create a system of linear equations in two unknowns (p1 and p2) and equal 0.
![100,000 - 400P_{1} +10P_{2} = 0\\150,000 + 10P_{1} -400P_{2} = 0](https://tex.z-dn.net/?f=100%2C000%20-%20400P_%7B1%7D%20%2B10P_%7B2%7D%20%3D%200%5C%5C150%2C000%20%2B%2010P_%7B1%7D%20-400P_%7B2%7D%20%3D%200)
4. Resolve the previous system
4.a. To make it easier, we can rethink the terms of the system like this:
is the same as saying:
![P_{2} = \frac{-100,000 + 400P_{1} }{10}](https://tex.z-dn.net/?f=P_%7B2%7D%20%3D%20%5Cfrac%7B-100%2C000%20%2B%20400P_%7B1%7D%20%7D%7B10%7D)
And
is the same as saying:
![P_{2}=\frac{150,000+10P_{1} }{400}](https://tex.z-dn.net/?f=P_%7B2%7D%3D%5Cfrac%7B150%2C000%2B10P_%7B1%7D%20%7D%7B400%7D)
Therefore:
![\frac{-100,000 + 400P_{1} }{10} =\frac{150,000+10P_{1} }{400}](https://tex.z-dn.net/?f=%5Cfrac%7B-100%2C000%20%2B%20400P_%7B1%7D%20%7D%7B10%7D%20%3D%5Cfrac%7B150%2C000%2B10P_%7B1%7D%20%7D%7B400%7D)
Notice that now we only have one unknown (P1).
4.b. In order to eliminate fractionals, we can multiply both terms by 400:
![\frac{400}{10} (-100,000 + 400P_{1} ) = \frac{400}{400} (150,000 + 10P_{1} )](https://tex.z-dn.net/?f=%5Cfrac%7B400%7D%7B10%7D%20%28-100%2C000%20%2B%20400P_%7B1%7D%20%29%20%3D%20%5Cfrac%7B400%7D%7B400%7D%20%28150%2C000%20%2B%2010P_%7B1%7D%20%29)
![(40)(-100,000+400P_{1}) =150,000+10P_{1}](https://tex.z-dn.net/?f=%2840%29%28-100%2C000%2B400P_%7B1%7D%29%20%3D150%2C000%2B10P_%7B1%7D)
![-4,000,000+16,000P_{1} =150,000+10P_{1}](https://tex.z-dn.net/?f=-4%2C000%2C000%2B16%2C000P_%7B1%7D%20%3D150%2C000%2B10P_%7B1%7D)
4.c. We solve the equation, putting numbers on one side and unknowns on the other:
![-4,000,000-150,000=10P_{1} -16,000P_{1}](https://tex.z-dn.net/?f=-4%2C000%2C000-150%2C000%3D10P_%7B1%7D%20-16%2C000P_%7B1%7D)
![-4,150,000=-15,990P_{1}](https://tex.z-dn.net/?f=-4%2C150%2C000%3D-15%2C990P_%7B1%7D)
![\frac{-4,150,000}{-15,990} =P_{1}](https://tex.z-dn.net/?f=%5Cfrac%7B-4%2C150%2C000%7D%7B-15%2C990%7D%20%3DP_%7B1%7D)
![P_{1} = $ 259.53](https://tex.z-dn.net/?f=P_%7B1%7D%20%3D%20%24%20259.53)
4.d. Once P1 has been identified, we replace it in any of the terms of the original system of equations (those established in 4.a).
![P_{2}= \frac{-100,000+400(259.53)}{10}](https://tex.z-dn.net/?f=P_%7B2%7D%3D%20%5Cfrac%7B-100%2C000%2B400%28259.53%29%7D%7B10%7D)
![P_{2} = 381.20](https://tex.z-dn.net/?f=P_%7B2%7D%20%3D%20381.20)