2/7 im pretty sure hope it helped
Answer:
The probability that a randomly selected call time will be less than 30 seconds is 0.7443.
Step-by-step explanation:
We are given that the caller times at a customer service center has an exponential distribution with an average of 22 seconds.
Let X = caller times at a customer service center
The probability distribution (pdf) of the exponential distribution is given by;

Here,
= exponential parameter
Now, the mean of the exponential distribution is given by;
Mean =
So,
⇒
SO, X ~ Exp(
)
To find the given probability we will use cumulative distribution function (cdf) of the exponential distribution, i.e;
; x > 0
Now, the probability that a randomly selected call time will be less than 30 seconds is given by = P(X < 30 seconds)
P(X < 30) =
= 1 - 0.2557
= 0.7443
0.833333333% is the answer
Answer:
- 8
Step-by-step explanation:
- 8 × 2 - (- 8)
- 8 × 2 + 8
- 16 + 8
- 8
Answer:
(2.25 , 0.75)
Step-by-step explanation:
solution is where the graphs intersect each other
3/4 = - x + 3
-x = 3/4 -3 = -2 1/4
x =2 1/4