<span>Chemically speaking, rust is a base and any acid will remove it. The choice of acid is going to be the thing to consider, since acid + base = salt and water. Phosphoric acid left a residue because the salt Iron phosphate is insoluble in water. Iron's soluble salts include the chloride, the sulfate and the nitrate. Industrially speaking, you need to "pickle" your iron. Pickling is a process in which dilute sulfuric acid is used to remove any surface corrosion prior to either painting or plating an iron surface. Sulfuric acid is ordinary battery acid and the salt Iron sulfate is not toxic. Sulfuric acid is one of the most common acids used (besides hydrochloric acid). The dilute kind is not terribly corrosive but concentrated sulfuric acid is a thick, syrupy liquid which can cause some nasty chemical burns if allowed to remain on the skin. It also heats up quite a lot when water is added, so this is an "Acid to water not water to acid" situation. The other choice is Hydrochloric acid, known as muriatic acid. The 20% concentrate is available in nearly any hardware store. It isn't as corrosive as concentrated sulfuric acid, but it has a burning, acrid stench, so never use the concentrate without adequate ventilation. It is ordinarily used to remove hard water deposits (boiler scale) but does a good on on rust as well. Concentrated Iron chloride isn't entirely inert but lots of rinsing will turn it back into harmless rust/sludge, especially if the rince water is naturally hard. Nitric acid will remove corrosion from anything, but it is extremely corrosive, smells worse then Hydrochloric acid and isn't easy to get, since it can be used to create some powerful explosives</span>
2.168 L of air will leave the container as it warms
<h3>Further explanation</h3>
Given
V₁=2.05 L
T₁ = 5 + 273 = 278 K
T₂ = 21 + 273 = 294 K
Required
Volume of air
Solution
Charles's Law
When the gas pressure is kept constant, the gas volume is proportional to the temperature

Input the value :
V₂=(V₁.T₂)/T₁
V₂=(2.05 x 294)/278
V₂=2.168 L
Methane gas and chlorine gas react to form hydrogen chloride gas and carbon tetrachloride gas. What volume of hydrogen chloride would be produced by this reaction if 3.16 L of chlorine were consumed at STP.
Be sure your answer has the correct number of significant digits.
Answer: Thus volume of carbon tetrachloride that would be produced is 0.788 L
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = 3.16 L
n = number of moles = ?
R = gas constant =
T =temperature =



According to stoichiometry:
4 moles of chlorine produces = 1 mole of carbon tetrachloride
Thus 0.141 moles of methane produces =
moles of carbon tetrachloride
volume of carbon tetrachloride =
Thus volume of carbon tetrachloride that would be produced is 0.788 L
Rainbows go in the order of ROYGBIV, which is an acronym for red, orange, yellow, green, blue, indigo, violet.
So, it would start off with red.
If you want to know why it starts off the rainbow, its because red has the longest wavelength, compared to the rest of the colors. (sorry I'm rambling, I got excited)
Hope this helps.
Answer:
Magnesium Difluoride
Explanation:
Mg = magnesium
F = fluoride
F2 = difluoride (prefix "di" indicates 2)