<span>There are 2 carbon atoms in ethanoic acid. Other name of such substance is acetic acid. It is a colorless liquid carboxylic acid with the chemical formula CH3COOH. It has antibacterial and antifungal properties.</span>
Answer:
The correct option is c) exothermic, negative.
Explanation:
Reactions that releases heat to the surroundings are called exothermic, and are characterized by negative entalpy (ΔH) values.
Here's the equation you use: Density = mass/volume
1) 5.2g/cm^3 = m/3.7cm^3
2) m = 5.2g/cm^3 x 3.7cm^3
3) m = 19.24g
You can check the answer by plugging it in
19.24g/3.7cm^3
= 5.2g/cm^3
sodium chloride is a compound that is stable because its constituent elements namely chlorine and sodium have formed ionic bonds with each other and their outer energy shells are filled with 8 electrons.
Sodium on its own has 11 electrons. Two of these are in the 1st energy level, eight in the 2nd energy level and one in the 3rd energy level. This arrangement is highly unstable rendering the element sodium highly unstable and reactive. It will burst into flames immediately on exposure to air and can burn through human flesh if it comes into contact with it.
Chlorine at room temperature is a poisonous gas. It has 17 electrons in the arrangement 2:8:7 . The outermost shell has 7 electrons and so this element is fairly stable but will readily react with human lungs with fatal consequences.
So each of these two elements on their own are deadly, but when the two react together, sodium gives up its single electron on the outer energy shell to chlorine which readily accepts it and fills its outer shell to make 8 forming ionic bonds and is thus the two are completely stable and cannot explode or react in any other way because the outer shell of each of them is now filled with 8 electrons.
The flashlight's beam will all be refracted towards a central axis. But, this is still dependent on the type of lens that is used for the said activity. The speed of light will vary depending whether the lens is a concave or a convex lens. The exit point of the light will always head towards the central axis.