Answer:
a.) 1.38 seconds
b.) 17.59ft
Step-by-step explanation:
h(t) = -16t^2 + 22.08t + 6
if we were to graph this, the vertex of the function would be the point, which if we substituted into the function would give us the maximum height.
to find the vertex, since we are dealing with something called "quadratic form" ax^2+bx+c, we can use a formula to find the vertex
-b/2a
b=22.08
a=-16
-22.08/-16, we get 1.38 when the minuses cancel out. since our x is time, it will be 1.38 seconds
now since the vertex is 1.38, we can substitute 1.38 into the function to find the maximum height.
h(1.38)= -16(1.38)^2 + 22.08t + 6 -----> is maximum height.
approximately = 17.59ft -------> calculator used, and rounded to 2 significant figures.
for c the time can be equal to (69+sqrt(8511))/100, as the negative version would be incompatible since we are talking about time. or if you wanted a rounded decimal, approx 1.62 seconds.
The given process is an example of a cluster system.
<h3>What is the cluster system?</h3>
The clustered systems are a combination of hardware clusters and software clusters.
The hardware clusters help in sharing of high-performance disks between the systems.
The software clusters makes all the systems work together.
Each node in the clustered systems contains the cluster software.
A cluster refers to a group of inter-connected computers where it works together to support applications and middleware (e.g. databases).
In a cluster, each & every computer is known to be a “node”.
To know more about the cluster system click the link given below.
brainly.com/question/4804019
If you add $47 to $17 multiplied by two, then the total cost would be $81 because 17 multiplied by two is 34, and 47 added to 34 is 81, so the total amount paid would be $81.
Answer:
(a)
(b) L reaches its maximum value when θ = 0 because cos²(0) = 1
Step-by-step explanation:
Lambert's Law is given by:
(1)
(a) We can rewrite the above equation in terms of sine function using the following trigonometric identity:

(2)
By entering equation (2) into equation (1) we have the equation in terms of the sine function:
(b) When θ = 0, we have:
We know that cos(θ) is a trigonometric function, between 1 and -1 and reaches its maximun values at nπ, when n = 0,1,2,3...
Hence, L reaches its maximum value when θ = 0 because cos²(0) = 1.
I hope it helps you!