Answer:
the 90% of confidence intervals for the average salary of a CFA charter holder
(1,63,775 , 1,80,000)
Step-by-step explanation:
<u>Explanation</u>:-
random sample of n = 49 recent charter holders
mean of sample (x⁻) = $172,000
standard deviation of sample( S) = $35,000
Level of significance α= 1.645
<u> 90% confidence interval</u>
![(x^{-} - Z_{\alpha } \frac{s}{\sqrt{n} } , x^{-} + Z_{\alpha } \frac{s}{\sqrt{n} })](https://tex.z-dn.net/?f=%28x%5E%7B-%7D%20-%20Z_%7B%5Calpha%20%7D%20%5Cfrac%7Bs%7D%7B%5Csqrt%7Bn%7D%20%7D%20%2C%20x%5E%7B-%7D%20%2B%20Z_%7B%5Calpha%20%7D%20%5Cfrac%7Bs%7D%7B%5Csqrt%7Bn%7D%20%7D%29)
![(172000 - 1.645 \frac{35000}{\sqrt{49} } , 172000 +1.645 \frac{35000}{\sqrt{49} })](https://tex.z-dn.net/?f=%28172000%20-%201.645%20%5Cfrac%7B35000%7D%7B%5Csqrt%7B49%7D%20%7D%20%2C%20172000%20%2B1.645%20%5Cfrac%7B35000%7D%7B%5Csqrt%7B49%7D%20%7D%29)
on calculation , we get
(1,63,775 , 1,80,000)
The mean value lies between the 90% of confidence intervals
(1,63,775 , 1,80,000)
Answer:
2450 mm³
Step-by-step explanation:
(15×10×7) + [(40+10)×4×7]
2450
Answer:
I dont know if this helps
Answer:
54 mph
Step-by-step explanation: