Answer:
<h2><em><u>
A to C = 25
</u></em></h2><h2><em><u>
A to B = 13
</u></em></h2><h2><em><u>
C to B = 37
</u></em></h2><h2><em><u>
</u></em></h2>
Step-by-Step Explanation:
<em><u>Perimeter</u></em> = 75
<em><u>Sides:</u></em>
2x + 3
3x + 4
2x - 9
<h2 /><h2><em><u>
1. Equal the sides added together to the perimeter</u></em></h2>
75 = 2x + 3 + 3x + 4 + 2x - 9
<h2><em><u>
2. Simplify Like terms</u></em></h2>
2x + 3 + 3x + 4 + 2x - 9 = 7x - 2
<h2><em><u>
3. Place the equation back together</u></em></h2>
75 = 7x - 2
<h2><em><u>
4. Isolate the variables and numbers</u></em></h2>
75 = 7x - 2
+2 +2
77 = 7x
<h2><em><u>
5. Simplify the equation</u></em></h2>
77 = 7x
/7 /7
<h2><em><u>
11 = x
</u></em></h2>
<h2><em><u>
6. Substitute the value of x into the side lengths.</u></em></h2>
2x + 3 = 2(11) + 3 = 22 + 3 = <em><u>25</u></em>
3x + 4 = 3(11) + 4 = 33 + 4 = <em><u>37</u></em>
2x - 9 = 2(11) - 9 = 22 - 9 = <em><u>13</u></em>
Answer:
the dimensions that minimize the cost of the cylinder are R= 3.85 cm and L=12.88 cm
Step-by-step explanation:
since the volume of a cylinder is
V= π*R²*L → L =V/ (π*R²)
the cost function is
Cost = cost of side material * side area + cost of top and bottom material * top and bottom area
C = a* 2*π*R*L + b* 2*π*R²
replacing the value of L
C = a* 2*π*R* V/ (π*R²) + b* 2*π*R² = a* 2*V/R + b* 2*π*R²
then the optimal radius for minimum cost can be found when the derivative of the cost with respect to the radius equals 0 , then
dC/dR = -2*a*V/R² + 4*π*b*R = 0
4*π*b*R = 2*a*V/R²
R³ = a*V/(2*π*b)
R= ∛( a*V/(2*π*b))
replacing values
R= ∛( a*V/(2*π*b)) = ∛(0.03$/cm² * 600 cm³ /(2*π* 0.05$/cm²) )= 3.85 cm
then
L =V/ (π*R²) = 600 cm³/(π*(3.85 cm)²) = 12.88 cm
therefore the dimensions that minimize the cost of the cylinder are R= 3.85 cm and L=12.88 cm
Answer:4 squares or a rectangle and a square
Step-by-step explanation:
Answer: I doubt your in it anymore
Step-by-step explanation:
If you're simplifying, you would get -258 I believe.