Answer:
80%
Step-by-step explanation:
If you divide 52 by 65 you will get a decimal, then multiply by 100% to get the equivalent.
52/65 = 0.8
0.8 x 100 = 80%
Answer:
a) 90 stamps
b) 108 stamps
c) 333 stamps
Step-by-step explanation:
Whenever you have ratios, just treat them like you would a fraction! For example, a ratio of 1:2 can also look like 1/2!
In this context, you have a ratio of 1:1.5 that represents the ratio of Canadian stamps to stamps from the rest of the world. You can set up two fractions and set them equal to each other in order to solve for the unknown number of Canadian stamps. 1/1.5 is representative of Canada/rest of world. So is x/135, because you are solving for the actual number of Canadian stamps and you already know how many stamps you have from the rest of the world. Set 1/1.5 equal to x/135, and solve for x by cross multiplying. You'll end up with 90.
Solve using the same method for the US! This will look like 1.2/1.5 = x/135. Solve for x, and get 108!
Now, simply add all your stamps together: 90 + 108 + 135. This gets you a total of 333 stamps!
Answer:
C. x=42
Step-by-step explanation:
16 + 3x + y = 180
126 + 16 + y = 180
y = 38
16 + 3x + 38 = 180
54 + 3x = 180
3x = 126
x=42
Answer:
it is
Step-by-step explanation:
13.8656
1) We can determine by the table of values whether a function is a quadratic one by considering this example:
x | y 1st difference 2nd difference
0 0 3 -0 = 3 7-3 = 4
1 3 10 -3 = 7 11 -7 = 4
2 10 21 -10 =11 15 -11 = 4
3 21 36-21 = 15 19-5 = 4
4 36 55-36= 19
5 55
2) Let's subtract the values of y this way:
3 -0 = 3
10 -3 = 7
21 -10 = 11
36 -21 = 15
55 -36 = 19
Now let's subtract the differences we've just found:
7 -3 = 4
11-7 = 4
15-11 = 4
19-15 = 4
So, if the "second difference" is constant (same result) then it means we have a quadratic function just by analyzing the table.
3) Hence, we can determine if this is a quadratic relation calculating the second difference of the y-values if the second difference yields the same value. The graph must be a parabola and the highest coefficient must be 2