The buoyancy of an object is dictated by its density. So let us calculate for density, where:density = mass / volume
Calculate the volume first of a solid cube:volume = (6 cm)^3 = 216 cm^3 = 216 mL
Therefore density is:density = 270 g / 216 mLdensity = 1.25 g / mL
Therefore this object will float in the layer in which the density is more than 1.25 g / mL.
Answer:
25.7 kJ/mol
Explanation:
There are two heats involved.
heat of solution of NH₄NO₃ + heat from water = 0
q₁ + q₂ = 0
n = moles of NH₄NO₃ = 8.00 g NH₄NO₃ × 1 mol NH₄NO₃/80.0 g NH₄NO₃
∴ n = 0.100 mol NH₄NO₃
q₁ = n * ΔHsoln = 0.100 mol * ΔHsoln
m = mass of solution = 1000.0 g + 8.00 g = 1008.0 g
q₂ = mcΔT = 58.0 g × 4.184 J°C⁻¹ g⁻¹ × ((20.39-21)°C) = -2570.19 J
q₁ + q₂ = 0.100 mol ×ΔHsoln – 2570.19 J = 0
ΔHsoln = +2570.19 J /0.100 mol = +25702 J/mol = +25.7 kJ/mol
The answer is covalent bond
The % yield if 500 g of sulfur trioxide reacted with excess water to produce 575 g of sulfuric acid is calculated using the below formula
% yield = actual yield/ theoretical yield x100
actual yield =575 grams
to calculate theoretical yield
find the moles of SO3 used =mass/molar mass
= 500g/ 80 g/mol =6.25 moles
SO3+H2O=H2SO4
by use of mole ratio of SO3 : H2SO4 which is 1:1 the moles of H2SO4 is also= 6.25 moles
the theoretical yield of H2SO4 is therefore = moles /molar mass
= 6.25 x98= 612.5 grams
%yield is therefore= 575 g/612 g x100= 93.9 %
My guess is that water is a liquid and not a solid, or a gas. It can be heated by us or by the suns rays, which if done by the suns rays the water azorbs the light rising the temp to the point of boil which then makes the water evaporate into the air, and thus making cloud in the sky that we see all the time thus when the clouds become big enough it begins to rain. ( also called the water cycle)