Answer: 313920
Explanation:First, we’re going to assume that the top of the circular plate surface is 2 meters under the water. Next, we will set up the axis system so that the origin of the axis system is at the center of the plate.
Finally, we will again split up the plate into n horizontal strips each of width Δy and we’ll choose a point y∗ from each strip. Attached to this is a sketch of the set up.
The water’s surface is shown at the top of the sketch. Below the water’s surface is the circular plate and a standard xy-axis system is superimposed on the circle with the center of the circle at the origin of the axis system. It is shown that the distance from the water’s surface and the top of the plate is 6 meters and the distance from the water’s surface to the x-axis (and hence the center of the plate) is 8 meters.
The depth below the water surface of each strip is,
di = 8 − yi
and that in turn gives us the pressure on the strip,
Pi =ρgdi = 9810 (8−yi)
The area of each strip is,
Ai = 2√4− (yi) 2Δy
The hydrostatic force on each strip is,
Fi = Pi Ai=9810 (8−yi) (2) √4−(yi)² Δy
The total force on the plate is found on the attached image.
Answer: 0.790 g/cm3
Explanation:
The density of acetone is 790 Kg/m3.
To convert from Kg to g we multiply by 1000 (1 Kg = 1000 g)
To convert from m3 to cm3 we multiply by 10∧6
So, The density of acetone in (g/cm3) = (790 x 1000) / (10∧6) = 0.79 g/cm3
Answer:
Explanation:
Intensity of light is inversely proportional to distance from source
I ∝ 1 /r² where I is intensity and r is distance from source . If I₁ and I₂ be intensity at distance r₁ and r₂ .
I₁ /I₂ = r₂² /r₁²
If r₂ = 4r₁ ( given )
I₁ / I₂ = (4r₁ )² / r₁²
= 16 r₁² / r₁²
I₁ / I₂ = 16
I₂ = I₁ / 16
So intensity will become 16 times less bright .
"16 times " is the answer .
The heat is transferred to one material to another, however insulators minimize that transfer, keeping it in the area, warming it.