The work done by the battery is equal to the charge transferred during the process times the potential difference between the two terminals of the battery:

where q is the charge and

is the potential difference.
In our problem, the work done is W=39 J while the potential difference of the battery is

, so we can find the charge transferred by the battery:
Answer:
The intensity will be 1/9 as much.
Explanation:
The intensity of the light or any source is inversely related to the square of the distance.

Now according to the question the distance is increased by three times than,

Therefore,

Therefore the intensity will become 1/9 times to the initial intensity.
Answer:
25 meters
Explanation:
1 sec is 2.5, 1x10 so 2.5x10=25
D is the correct answer, assuming that this is the special case of classical kinematics at constant acceleration. You can use the equation V = Vo + at, where Vo is the initial velocity, V is the final velocity, and t is the time elapsed. In D, all three of these values are given, so you simply solve for a, the acceleration.
A and C are clearly incorrect, as mass and force (in terms of projectile motion) have no effect on an object's motion. B is incorrect because it is not useful to know the position or distance traveled, unless it will help you find displacement. Even then, you would not have enough information to use a kinematics equation to find a.
Answer:
C
Explanation:
Im not sure but I did somthing simalier