Answer:
In summary, it is safe to handle this voltage with dry hands because the current value that you pass through the body is smaller than its underestimated sensitivity.
Explanation:
The current flowing through your system is described by Ohm's law
V = I R
where I is the current, V the voltage and R the resistance
in this case three barateras are taken in series giving a total voltage of V = 4.5 V the typical resistance values of dry skin is R = 1000 000Ohm and the resinification of wet skin is R = 100000 ohm
let's calculate the current flowing
I = V / R
I = 4.5 / 1000000
I = 4.5 10⁻⁶ A
this is the current with dry hands, we see that much less than the value that allows to feel a painful response by the body
If the skin is
I = 4,5 / 100,000
I = 4.5 10⁻⁵ A
This value is small, but it is close to the pain threshold, but it is in the range of slight discomfort.
In summary, it is safe to handle this voltage with dry hands because the current value that you pass through the body is smaller than its underestimated sensitivity.
Answer:
the internal resistance of the cell is 0.1 ohm.
Explanation:
Given;
p.d at the terminals of a battery at no load, E₁ = 25 V
p.d at the terminals of a battery at a load, E₂ = 24 V
current through the circuit, I = 10 A
The potential drop across the circuit, V = E₁ - E₂
= 25 V - 24 V
= 1 V
The internal resistance of the cell is calculated as follows;
r = V/I
r = 1 / 10
r = 0.1 ohm
Therefore, the internal resistance of the cell is 0.1 ohm.
Because sometimes it happens that they discover a dwarf planet
that nobody ever knew about before. When that happens, they
ADD the new one to the list of known dwarf planets, and then the
total number of dwarf planets on the list increases by 1 .
Answer:
A and B
Explanation:
The relation between frequency and wavelength is shown below as:

c is the speed of light having value 
Thus, the product of the wavelength and the frequency is constant and equal to 
<u>Option A is correct.</u>
Given, Frequency = 
Thus, Wavelength is:



Also, 1 m =
Å
So,
<u>Wavelength = 3.0 Å</u>
<u>Option B is correct.</u>
As stated above, the speed of electromagnetic radiation is constant. Hence, each radiation of the spectrum travels with same speed.
<u>Option C is incorrect.</u>
Answer:
9.934 m/s²
Explanation:
Given:
Initial speed of the Bugatti Veyron Super Sport = 0 mi/h
Final speed of the Bugatti Veyron Super Sport = 60 mi/h
Now,
1 mi/h = 0.44704 m / s
thus,
60 mi/h = 0.44704 × 60 = 26.8224 m/s
Time = 2.70 m/s
Now,
The acceleration (a) is given as:
thus,
or
a = 9.934 m/s²