Answer:
Magnitude of vector A = 0.904
Explanation:
Vector A , which is directed along an x axis, that is

Vector B , which has a magnitude of 5.5 m


The sum is a third vector that is directed along the y axis, with a magnitude that is 6.0 times that of vector A 
Comparing we will get

Substituting in 

So we have

Magnitude of vector A = 0.904
Answer:
(a) 0.17 m
(b) 5.003 m
(c) 6.38 ×
N
(d) 7.37 ×
N
Explanation:
(a) The minimum value of
will occur when q3 = 0 m or at origin and q1, q2 are at 0.17 m so the distance between q3 and q1, q2 is 0.17 m, therefore the <em>minimum value of x= 0.17 m</em>.
(b) The maximum value of x will occur when q3 = 5 m because it is said in the question that 5 is the maximum distance travelled by q3. To find the hypotenuse i.e. the distance between q3 and q1,q2, we use Pythagoras theorem.

<em>Hence, the maximum distance is 5.002 m</em>
(c) For minimum magnitude we use the minimum distance calculated in (a)
Minimum Distance = 0.17 m
For electrostatic force= 

×
(d) For maximum magnitude, we use the maximum distance calculated in (b)
Maximum Distance = 5.002 m
Using the formula for electrostatic force again:
F = 
F= 7.37×
N
The value of the force, F₀, at equilibrium is equal to the horizontal
component of the tension in string 2.
Response:
- The value of F₀ so that string 1 remains vertical is approximately <u>0.377·M·g</u>
<h3>How can the equilibrium of forces be used to find the value of F₀?</h3>
Given:
The weight of the rod = The sum of the vertical forces in the strings
Therefore;
M·g = T₂·cos(37°) + T₁
The weight of the rod is at the middle.
Taking moment about point (2) gives;
M·g × L = T₁ × 2·L
Therefore;

Which gives;


F₀ = T₂·sin(37°)
Which gives;

<u />
Learn more about equilibrium of forces here:
brainly.com/question/6995192
Scientists conduct experiments in order to prove a theory or a prediction they have or contradict it, so that then they can write down their results to study them.