1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
polet [3.4K]
4 years ago
11

15. All of the following parameters are forces except

Physics
1 answer:
icang [17]4 years ago
3 0

Answer: What do you need help with?

Explanation:

You might be interested in
A small car with a mass of 800kg moving with a velocity of 27.8 m/s. The car stops at a yellow light in 3.9 seconds. What force
raketka [301]

Answer:

F = 5702.56 N

Explanation:

Given that,

Mass of a small car, m = 800 kg

Initial speed of the car, u = 27.8 m/s

Final speed, v = 0

Time, t = 3.9 s

We need to find the force did it take for the car to stop.

The force acting on an object is given by :

F=ma\\\\F=\dfrac{m(v-u)}{t}\\\\F=\dfrac{800\times (0-27.8)}{3.9}\\\\F=-5702.56\ N

So, the magnitude of force acting on the car to stop is 5702.56 N.

4 0
3 years ago
How do low energy electromagnetic waves compare with high energy electromagnetic waves? Select all
Dennis_Churaev [7]

Answer:

Explanation:

The different types of radiation are defined by the the amount of energy found in the photons. Radio waves have photons with low energies, microwave photons have a little more energy than radio waves, infrared photons have still more, then visible, ultraviolet, X-rays, and, the most energetic of all, gamma-rays

3 0
3 years ago
Two forces,
serg [7]

First compute the resultant force F:

\mathbf F_1=(5.90\,\mathbf i-5.60\,\mathbf j)\,\mathrm N

\mathbf F_2=(4.65\,\mathbf i-5.55\,\mathbf j)\,\mathrm N

\implies\mathbf F=\mathbf F_1+\mathbf F_2=(10.55\,\mathbf i-11.15\,\mathbf j)\,\mathrm N

Then use Newton's second law to determine the acceleration vector \mathbf a for the particle:

\mathbf F=m\mathbf a

(10.55\,\mathbf i-11.15\,\mathbf j)\,\mathrm N=(2.10\,\mathrm{kg})\mathbf a

\mathbf a\approx(5.02\,\mathbf i-5.31\,\mathbf j)\dfrac{\rm m}{\mathrm s^2}

Let \mathbf x(t) and \mathbf v(t) denote the particle's position and velocity vectors, respectively.

(a) Use the fundamental theorem of calculus. The particle starts at rest, so \mathbf v(0)=0. Then the particle's velocity vector at <em>t</em> = 10.4 s is

\mathbf v(10.4\,\mathrm s)=\mathbf v(0)+\displaystyle\int_0^{10}\mathbf a(u)\,\mathrm du

\mathbf v(10.4\,\mathrm s)=\left((5.02\,\mathbf i-5.31\,\mathbf j)u\,\dfrac{\rm m}{\mathrm s^2}\right)\bigg|_{u=0}^{u=10.4}

\mathbf v(10.4\,\mathrm s)\approx(52.2\,\mathbf i-55.2\,\mathbf j)\dfrac{\rm m}{\rm s}

If you don't know calculus, then just use the formula,

v_f=v_i+at

So, for instance, the velocity vector at <em>t</em> = 10.4 s has <em>x</em>-component

v_{f,x}=0+\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)(10.4\,\mathrm s)=52.2\dfrac{\rm m}{\mathrm s^2}

(b) Compute the angle \theta for \mathbf v(10.4\,\mathrm s):

\tan\theta=\dfrac{-55.2}{52.2}\implies\theta\approx-46.6^\circ

so that the particle is moving at an angle of about 313º counterclockwise from the positive <em>x</em> axis.

(c) We can find the velocity at any time <em>t</em> by generalizing the integral in part (a):

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\implies\mathbf v(t)=\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf i+\left(-5.31\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

Then using the fundamental theorem of calculus again, we have

\mathbf x(10.4\,\mathrm s)=\mathbf x(0)+\displaystyle\int_0^{10.4}\mathbf v(u)\,\mathrm du

where \mathbf x(0)=(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m is the particle's initial position. So we get

\mathbf x(10.4\,\mathrm s)=(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m+\displaystyle\int_0^{10.4}\left(\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf i+\left(-5.31\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\right)\,\mathrm du

\mathbf x(10.4\,\mathrm s)=(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m+\dfrac12\left(\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf i+\left(-5.31\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=10.4}

\mathbf x(10.4\,\mathrm s)\approx(542\,\mathbf i-570\,\mathbf j)\,\mathrm m

So over the first 10.4 s, the particle is displaced by the vector

\mathbf x(10.4\,\mathrm s)-\mathbf x(0)\approx(270\,\mathbf i-283\,\mathbf j)\,\mathrm m-(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m\approx(272\,\mathbf i-287\,\mathbf j)\,\mathrm m

or a net distance of about 395 m away from its starting position, in the same direction as found in part (b).

(d) See part (c).

3 0
3 years ago
The amount of charge flowing through a particular point in a conductor is represented by the equation Q = at^3 + bt + c, where a
stira [4]

Explanation:

Below is an attachment containing the solution.

3 0
4 years ago
Help please, I don't get it​
Sergio [31]

Answers:

a) \hat F=(0.83,-0.55) N

b) \hat D=(-0.44,-0.89) m

c) \hat V=(-0.47,0.88) m/s

Explanation:

A unit vector is a vector whose magnitude (length) is equal to 1. This kind of vector is identified as \hat v and the way to calculate is as follows:

\hat v=\frac{\vec v}{|v|}

Where:

\vec v=(x,y) is the vector

|v|=\sqrt{x^{2}+y^{2}} is the magnitude of the vector

Having this information clarified, let's begin with the answers:

a) Force Vector

\vec F=(9.0 \hat i - 6.0 \hat j) N

Magnitude of \vec F:

|F|=\sqrt{(9.0 \hat i)^{2}+(-6.0 \hat j)^{2 }}N=10.81 N

<u />

<u>Unit vector:</u>

\hat F=\frac{\vec F}{|F|}

\hat F=\frac{(9.0 \hat i - 6.0 \hat j) N}{10.81 N}

\hat F=\frac{9.0}{10.81} N-\frac{6.0}{10.81}N

\hat F=(0.83,-0.55) N

b) Displacement Vector

\vec D=(-4.0 \hat i - 8.0 \hat j) m

Magnitude of \vec D:

|D|=\sqrt{(-4.0 \hat i)^{2}+(-8.0 \hat j)^{2 }}m=8.94 m

<u />

<u>Unit vector:</u>

\hat D=\frac{\vec D}{|D|}

\hat D=\frac{(-4.0 \hat i - 8.0 \hat j) m}{8.94 m}

\hat D=\frac{-4.0}{8.94} Nm+\frac{-8.0}{8.94}m

\hat D=(-0.44,-0.89) m

c) Velocity Vector

\vec V=(-3.50 \hat i + 6.50 \hat j) m/s

Magnitude of \vec V:

|V|=\sqrt{(-3.50 \hat i)^{2}+(6.50 \hat j)^{2}}m/s=7.38 m/s

<u />

<u>Unit vector:</u>

\hat V=\frac{\vec V}{|V|}

\hat V=\frac{(-3.50 \hat i +6.50 \hat j) m/s}{7.38 m/s}

\hat V=\frac{-3.50}{7.38} m/s+\frac{6.50}{7.38}m/s

\hat V=(-0.47,0.88) m/s

8 0
4 years ago
Other questions:
  • Determine the minimum applied force p required to move wedge a to the right. the spring is compressed a distance of 175 mm. negl
    13·1 answer
  • A television advertisement claiming that a product is light-years ahead of its time does not make sense because __________.
    11·1 answer
  • Assume the light wave directed at the paper is white light and the paper contains pigments that absorb the wavelengths of red-or
    6·2 answers
  • Two particles, each of mass m, are initially at rest very far apart.Obtain an expression for their relative speed of approach at
    7·1 answer
  • The two sleds shown below are about to collide. When they collide, they bounce off each other and no energy is lost. The kinetic
    9·1 answer
  • What four regions of the electromagnetic spectrum
    13·1 answer
  • A tree is fixed relative to Earth a tree is blank relative to the Sun
    5·1 answer
  • Lamar has been running sprints to prepare for his next football game.He has found that he can maintain his maximum speed for 45
    6·1 answer
  • PARAPHRASE PLEASE
    14·1 answer
  • Which statement best describes the movement of atoms in a solid?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!