![\bf ~~~~~~\textit{parabola vertex form} \\\\ \begin{array}{llll} \stackrel{\textit{we'll use this one}}{y=a(x- h)^2+ k}\\\\ x=a(y- k)^2+ h \end{array} \qquad\qquad vertex~~(\stackrel{2}{ h},\stackrel{-1}{ k}) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=2\\ k=-1 \end{cases}\implies y=a(x-2)^2-1 \\\\\\ \textit{we also know that } \begin{cases} y=0\\ x=5 \end{cases}\implies 0=a(5-2)^2-1\implies 1=9a \\\\\\ \cfrac{1}{9}=a\qquad therefore\qquad \boxed{y=\cfrac{1}{9}(x-2)^2-1}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Bparabola%20vertex%20form%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20%5Cstackrel%7B%5Ctextit%7Bwe%27ll%20use%20this%20one%7D%7D%7By%3Da%28x-%20h%29%5E2%2B%20k%7D%5C%5C%5C%5C%20x%3Da%28y-%20k%29%5E2%2B%20h%20%5Cend%7Barray%7D%20%5Cqquad%5Cqquad%20vertex~~%28%5Cstackrel%7B2%7D%7B%20h%7D%2C%5Cstackrel%7B-1%7D%7B%20k%7D%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20h%3D2%5C%5C%20k%3D-1%20%5Cend%7Bcases%7D%5Cimplies%20y%3Da%28x-2%29%5E2-1%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Bwe%20also%20know%20that%20%7D%20%5Cbegin%7Bcases%7D%20y%3D0%5C%5C%20x%3D5%20%5Cend%7Bcases%7D%5Cimplies%200%3Da%285-2%29%5E2-1%5Cimplies%201%3D9a%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B1%7D%7B9%7D%3Da%5Cqquad%20therefore%5Cqquad%20%5Cboxed%7By%3D%5Ccfrac%7B1%7D%7B9%7D%28x-2%29%5E2-1%7D)
now, let's expand the squared term to get the standard form of the quadratic.

Answer:
The answer is 6/5
Step-by-step explanation:
Problem:
Solve
2
x
+
5
y
=
−
3
;
3
x
−
y
=
21
Steps:
I will try to solve your system of equations.
3
x
−
y
=
21
;
2
x
+
5
y
=
−
3
Step: Solve
3
x
−
y
=
21
for y:
3
x
−
y
+
−
3
x
=
21
+
−
3
x
(Add -3x to both sides)
−
y
=
−
3
x
+
21
−
y
−
1
=
−
3
x
+
21
−
1
(Divide both sides by -1)
y
=
3
x
−
21
Step: Substitute
3
x
−
21
for
y
in
2
x
+
5
y
=
−
3
:
2
x
+
5
y
=
−
3
2
x
+
5
(
3
x
−
21
)
=
−
3
17
x
−
105
=
−
3
(Simplify both sides of the equation)
17
x
−
105
+
105
=
−
3
+
105
(Add 105 to both sides)
17
x
=
102
17
x
17
=
102
17
(Divide both sides by 17)
x
=
6
Step: Substitute
6
for
x
in
y
=
3
x
−
21
:
y
=
3
x
−
21
y
=
(
3
)
(
6
)
−
21
y
=
−
3
(Simplify both sides of the equation)
Answer:
y
=
−
3
and
x
=
6
Answer:
191/12
Step-by-step explanation: