Answer:
53 lies between 7.2² and 7.3²
Step-by-step explanation:
Estimating a root to the nearest tenth can be done a number of ways. The method shown here is to identify the tenths whose squares bracket the value of interest.
You have answered the questions of parts 1 to 3.
__
<h3>4.</h3>
You are given that ...
7.2² = 51.84
7.3² = 53.29
This means 53 lies between 7.2² and 7.3², so √53 lies between 7.2 and 7.3.
53 is closer to 7.3², so √53 will be closer to 7.3 than to 7.2.
7.3 is a good estimate of √53 to the tenths place.
_____
<em>Additional comment</em>
For an integer n that is the sum of a perfect square (s²) and a remainder (r), the square root is between ...
s +r/(2s+1) < √n < s +r/(2s)
For n = 53 = 7² +4, this means ...
7 +4/15 < √53 < 7 +4/14
7.267 < √53 < 7.286
Either way, √53 ≈ 7.3.
__
The root is actually equal to the continued fraction ...

Answer:
Step-by-step explanation:
Golfer had the lowest number of strokes per hole is <u>Alicia </u> = 4.
<u>Step-by-step explanation:</u>
We have , Three different golfers played a different number of holes today. Rory played 999 holes and had a total of 424242 strokes. Alicia played 181818 holes and had a total of 797979 strokes. Rickie played 272727 holes and had a total of 123123123 strokes. We have to find , Which golfer had the lowest number of strokes per hole :
<u>Rory:</u>
Number of strokes per hole = 
<u>Alicia:</u>
Number of strokes per hole = 
<u>Rickie:</u>
Number of strokes per hole = 
∴ Golfer had the lowest number of strokes per hole is <u>Alicia </u> = 4.
Step-by-step explanation:
X Y
-5 45
-4. 32
-3. 21
-2. 12
-1. 5
0 0
1. -3
2. -4
3. -3
4 0
5 5