We have that the electric field at the center of the metal ball due only to the charges on the surface of the metal ball is

From the question we are told that
A solid metal ball of radius 1.5 cm
bearing a charge of -15 nC is located near a hollow plastic ball of radius 1.9 cm bearing
uniformly distributed charge of -7 nC
The distance between the centers of the balls is 9 cm
Generally the equation for the electric field is mathematically given as


For more information on this visit
brainly.com/question/21811998
#1). Anthony does the same amount of work as Angel, with <em>more power</em>.
#2). Power = (Work)/(Time) = 41,000 J / 500 s = <em>82 watts .</em>
#3). Power = (Work) / (Time) = 83 J / 3 sec = <em>27.7 watts</em>
Answer:
A. The bomb will take <em>17.5 seconds </em>to hit the ground
B. The bomb will land <em>12040 meters </em>on the ground ahead from where they released it
Explanation:
Maverick and Goose are flying at an initial height of
, and their speed is v=688 m/s
When they release the bomb, it will initially have the same height and speed as the plane. Then it will describe a free fall horizontal movement
The equation for the height y with respect to ground in a horizontal movement (no friction) is
[1]
With g equal to the acceleration of gravity of our planet and t the time measured with respect to the moment the bomb was released
The height will be zero when the bomb lands on ground, so if we set y=0 we can find the flight time
The range (horizontal displacement) of the bomb x is
[2]
Since the bomb won't have any friction, its horizontal component of the speed won't change. We need to find t from the equation [1] and replace it in equation [2]:
Setting y=0 and isolating t we get

Since we have 


Replacing in [2]


A. The bomb will take 17.5 seconds to hit the ground
B. The bomb will land 12040 meters on the ground ahead from where they released it
14.59390 kg hope it helps