1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SVEN [57.7K]
3 years ago
10

Consider two ideal gases, A and B, at the same temperature. The rms speed of the molecules of gas A is twice that ofgas B. How d

oes the molecular mass of A compare to that of B?a. The molecular mass of A is one half that of B.b. The molecular mass of A is one fourth that of B.c. The molecular mass of A is 1.4 times that of B.d.The molecular mass of A is four times that of B.e. The molecular mass of A is twice that of B.
Physics
1 answer:
katen-ka-za [31]3 years ago
8 0

The rms speed of the molecules of gas A is twice that of gas B. The molecular mass of A is one fourth to that of B.

Answer: Option B

<u>Explanation:</u>

Measuring the speed of particles at a given point in time results in a large distribution of values. Some molecules can move very slowly, others very fast, and because they are still moving in different directions, the speeds may be zero. (Velocity, vector quantity that corresponds to the speed and direction of the molecule.)

To correctly estimate the average velocity, you must take the squares of the mean velocity and take the square root of this value. This is known as the root mean square (rms) velocity and is shown as follows:

                 V_{r m s}=\sqrt{\frac{3 R T}{M}}

Where,

M – Gas’s molar mass

R – Molar mass constant

T – Temperature (in Kelvin)

Given data is rms speed for gas molecule A is twice that of gas molecule B. So,

                 \left(V_{r m s}\right)_{A}=2\left(V_{r m s}\right)_{B}

Therefore, equating the molecule’s rms speed formula for both A and B,

                  \sqrt{\frac{3 R T}{M_{A}}}=2(\sqrt{\frac{3 R T}{M_{B}}})

On squaring both sides, we get,

                 \frac{3 R T}{M_{A}}=4\left(\frac{3 R T}{M_{B}}\right)

By solving the above equations, we get,

                 M_{A}=\frac{M_{B}}{4}

You might be interested in
(33%) Problem 3: Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1100 kg and i
expeople1 [14]

Answer:

The final velocity of the cars is 8.38 m/s at an angle 39.1° south of west.

Explanation:

Given that,

Mass of first car = 1100 kg

Velocity of first car = 8.5 m/s

Mass of second car = 650 kg

Velocity of second car = 17.5 m/s

Suppose we need to find the final velocity of the cars and direction of the cars.

We need to calculate the velocity of the car in west direction

Using conservation of momentum in west direction

m_{f}v_{f}+m_{s}v_{s}= (m_{f}+m_{s})v_{x}

v_{x}=\dfrac{m_{f}v_{f}+m_{s}v_{s}}{(m_{f}+m_{s})}

Put the value into the formula

v_{x}=\dfrac{1100\times0+650\times17.5}{1100+650}

v_{x}=6.5\ m/s

We need to calculate the velocity of the car in south direction

Using conservation of momentum in south direction

m_{f}v_{f}+m_{s}v_{s}= (m_{f}+m_{s})v_{y}

v_{y}=\dfrac{m_{f}v_{f}+m_{s}v_{s}}{(m_{f}+m_{s})}

Put the value into the formula

v_{y}=\dfrac{1100\times8.5+650\times0}{1100+650}

v_{y}=5.3\ m/s

We need to calculate the final velocity of the cars

Using formula of velocity

v_{eq}=\sqrt{(6.5)^2+(5.3)^2}

v_{eq}=8.38\ m/s

We need to calculate the direction

Using formula of direction

\tan\theta=\dfrac{v_{y}}{v_{x}}

Put the value into the formula

\tan\theta=\dfrac{5.3}{6.5}

\theta=\tan^{-1}(\dfrac{5.3}{6.5})

\theta=39.1^{\circ}

Hence, The final velocity of the cars is 8.38 m/s at an angle 39.1° south of west.

8 0
3 years ago
Even though earth has ____ mass than the sun, the moon orbits earth because it much nearer to it.
kozerog [31]

Even though the Earth has less mass than the Sun, the moon orbits Earth because it’s much nearer to it.

<u>Explanation :</u>

The fact is that the Moon orbits both the Sun and the Earth. On looking at the orbit of the Moon, it orbits in the same manner the way Earth does, but in a Spiro graph pattern along with orbiting the Earth with a small wobble to it.  

Since the Sun has greater distance from the Moon as compared to the Earth (around 400 times), the gravity of Earth draws better impact on the Moon.  

The escape velocity of the Moon is about 1.2 km/s at the distance from the Earth which is not sufficient to get ripped away from the Earth.  

Hence, the moon orbits the Earth along with orbiting the Sun together with the Earth, but seems as if it only orbits the Moon.

3 0
3 years ago
Read 2 more answers
If $1,800 is invested in a savings account offering interest at a rate of 4.5% per year, compounded continuously, how fast is th
Archy [21]

Answer:

The total amount  after 3 years is = $ 2054.10

Explanation:

Given data

Principal Amount (P) = $ 1800

Rate of interest (R) = 4.5 %

Thus the total amount after 3 years compounded annually is given by the formula =  P × [1 +\frac{R}{100}  ]^{3}

⇒ 1800 × [1 +\frac{4.5}{100}  ]^{3}

⇒ 2054.10

Thus the total amount  after 3 years is = $ 2054.10

Compound interest earned in three years = 2054.10 - 1800 = $ 254.10

3 0
4 years ago
A person can run 280 m in 68 s. At what speed are they running?
ella [17]

Answer:

Explanation:

Hi there,

280 miles in 68 seconds

280/68 in 1 second

= 4.12 miles per second

 

or 4.12 x 60

247.2 miles per minute

or 247.2 X 60

= 14832 miles per hour

Hope this helps :-)

6 0
3 years ago
Read 2 more answers
18. Un avión de rescate de animales que vuela hacia el este a 36.0 m/s deja caer una paca de
Alona [7]

Answer:

Definimos momento como el producto entre la masa y la velocidad

P = m*v

(tener en cuenta que la velocidad es un vector, por lo que el momento también será un vector)

Sabemos que el peso de la paca de heno es 175N, y el peso es masa por aceleración gravitatoria, entonces.

Peso = m*9.8m/s^2 = 175N

m = (175N)/(9.8m/s^2) = 17.9 kg

Ahora debemos calcular la velocidad de la paca justo antes de tocar el suelo.

Sabemos que la velocidad horizontal será la misma que tenía el avión, que es:

Vx = 36m/s

Mientras que para la velocidad vertical, usamos la conservación de la energía:

E = U + K

Apenas se suelta la caja, esta tiene velocidad cero, entonces su energía cinética será cero y la caja solo tendrá energía potencial (Si bien la caja tiene velocidad horizontal en este punto, por la superposición lineal podemos separar el problema en un caso horizontal y en un caso vertical, y en el caso vertical no hay velocidad inicial)

Entonces al principio solo hay energía potencial:

U = m*g*h

donde:

m = masa

g = aceleración gravitatoria

h = altura  

Sabemos que la altura inicial es 60m, entonces la energía potencial es:

U = 175N*60m = 10,500 N

Cuando la paca esta próxima a golpear el suelo, la altura h tiende a cero, por lo que la energía potencial se hace cero, y en este punto solo tendremos energía cinética, entonces:

10,500N = (m/2)*v^2

De acá podemos despejar la velocidad vertical justo antes de golpear el suelo.

√(10,500N*(2/ 17.9 kg)) = 34.25 m/s

La velocidad vertical es 34.25 m/s

Entonces el vector velocidad se podrá escribir como:

V = (36 m/s, -34.25 m/s)

Donde el signo menos en la velocidad vertical es porque la velocidad vertical es hacia abajo.

Reemplazando esto en la ecuación del momento obtenemos:

P = 17.9kg*(36 m/s, -34.25 m/s)  

P = (644.4 N, -613.075 N)

6 0
3 years ago
Other questions:
  • Which phrase best completes the following analogy?
    15·2 answers
  • A positive charge, q1, of 5 µC is 3 × 10–2 m west of a positive charge, q2, of 2 µC. What is the magnitude and direction of the
    7·1 answer
  • My Notes A flat loop of wire consisting of a single turn of cross-sectional area 7.80 cm2 is perpendicular to a magnetic field t
    10·1 answer
  • A parallel beam of light from a laser with a wavelength 450 nm, falls on a grating whose slits are 1.28 x 10^-4 cm apart. How fa
    14·1 answer
  • Find analytically the velocity of the object at the end point of the inclined plane for a certain angle Ө
    8·1 answer
  • At which position is the kinetic energy of a particle executing SHM greatest?
    13·1 answer
  • EASY BRAINLIEST!!URGENT PLEASE HELP.
    8·1 answer
  • I need the answer with steps
    6·1 answer
  • A power plant burns coal to generate electricity. Suppose that 1000 J of heat (Q) from the coal fire enters a boiler, which is k
    7·1 answer
  • (fill in the blank) , itself a silver shape beneath the steadfast constellations, simon's dead body moved out toward the open se
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!