It is an alkaline earth metal.
Answer:
"0.60 g" is the appropriate solution.
Explanation:
The given values are:
Volume of base,
= 30 ml
Molarity of base,
= 0.05 m
Molar mass of acid,
= 400 g/mol
As we know,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒
hence,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
Answer:
HOAc is stronger acid than HClO
ClO⁻ is stronger conjugate base than OAc⁻
Kb(OAc⁻) = 5.5 x 10⁻¹⁰
Kb(ClO⁻) = 3.3 x 10⁻⁷
Explanation:
Assume 0.10M HOAc => H⁺ + OAc⁻ with Ka = 1.8 x 10⁻⁵
=> [H⁺] = √Ka·[Acid] =√(1.8 x 10⁻⁵)(0.10) M = 1.3 x 10⁻³M H⁺
Assume 0.10M HClO => H⁺ + ClO⁻ with Ka = 3 x 10⁻⁸
=> [H⁺] = √(3 x 10⁻⁸)(0.10)M = 5.47 x 10⁻⁵M H⁺
HOAc delivers more H⁺ than HClO and is more acidic.
Kb = Kw/Ka, Kw = 1 x 10⁻¹⁴
Kb(OAc⁻) = 5.5 x 10⁻¹⁰
Kb(ClO⁻) = 3.3 x 10⁻⁷
Answer:
150ml
Explanation:
For this question,
NaOH completely dissociates. It is a strong base
HCl also completely dissociates. It is a strong acid
So we have this equation
m1v1 = m2v2 ----> equation 1
M2 = 2m
V1= ??
M2 = 6m
V2 = 50m
When we input these into equation 1, we have:
2m x v1 = 6m x 50ml
V1 = 6m x 50ml/2
V1 = 300/2
V1 = 150ml
Therefore NaOH that is required to neutralize the solution of hydrochloric acid is 150ml.
Thank you
Becky's speed is her distance travelled which is 30 km divided by her time travelled of 2.5 hours which gives her average speed of 12 km/hour which is a quite good speed if she was say riding a bicycle and which would give her a good aerobic workout.