Answer:0.1759 v
Explanation:
Intensity of wave at receiver end is
I=
I=
I=
Amplitude of electric field at receiver end

Amplitude of induced emf
=
=
=
Any process in which a mixture of materials separates out partially
The equation for electrical power is<span>P=VI</span>where V is the voltage and I is the current. This can be rearranged to solve for I in 6(a).
6(b) can be solved with Ohm's Law<span>V=IR</span>or if you'd like, from power, after substituting Ohm's law in for I<span>P=<span><span>V2</span>R</span></span>
For 7, realize that because they are in parallel, their voltages are the same.
We can find the resistance of each lamp from<span>P=<span><span>V2</span>R</span></span>Then the equivalent resistance as<span><span>1<span>R∗</span></span>=<span>1<span>R1</span></span>+<span>1<span>R2</span></span></span>Then the total power as<span><span>Pt</span>=<span><span>V2</span><span>R∗</span></span></span>However, this will reveal that (with a bit of algebra)<span><span>Pt</span>=<span>P1</span>+<span>P2</span></span>
For 8, again the resistance can be found as<span>P=<span><span>V2</span>R</span></span>The energy usage is simply<span><span>E=P⋅t</span></span>
a = ( v(2) - v(1) ) ÷ ( t(2) - t(1) )
2 = ( v(2) - 10 ) ÷ ( 6 - 0 )
2 × 6 = v(2) - 10
v(2) = 12 + 10
v(2) = 22 m/s
Monoammonium phosphate effectively smothers the fire, while sodium bicarbonate induces a chemical reaction which extinguishes the fire. Fire extinguishers with a Class C rating are suitable for fires in “live” electrical equipment.