Answer:
Acceleration = 5.77 m/s²
Distance cover in 13 seconds = 487.56 meter
Explanation:
Given:
Final velocity of mobile device = 75 m/s
initial velocity of mobile device = 0 m/s
Time taken = 13 seconds
Find:
Acceleration
Distance cover in 13 seconds
Computation:
v = u + at
75 = 0 + (a)(13)
13a = 75
a = 5.77
Acceleration = 5.77 m/s²
s = ut + (1/2)(a)(t²)
s = (0)(t) + (1/2)(5.77)(13²)
Distance cover in 13 seconds = 487.56 meter
<h2>
Answer:</h2>
(a) 3.96 x 10⁵C
(b) 4.752 x 10⁶ J
<h2>
Explanation:</h2>
(a) The given charge (Q) is 110 A·h (ampere hour)
Converting this to A·s (ampere second) gives the number of coulombs the charge represents. This is done as follows;
=> Q = 110A·h
=> Q = 110 x 1A x 1h [1 hour = 3600 seconds]
=> Q = 110 x A x 3600s
=> Q = 396000A·s
=> Q = 3.96 x 10⁵A·s = 3.96 x 10⁵C
Therefore, the number of coulombs of charge is 3.96 x 10⁵C
(b) The energy (E) involved in the process is given by;
E = Q x V -----------------(i)
Where;
Q = magnitude of the charge = 3.96 x 10⁵C
V = electric potential = 12V
Substitute these values into equation (i) as follows;
E = 3.96 x 10⁵ x 12
E = 47.52 x 10⁵ J
E = 4.752 x 10⁶ J
Therefore, the amount of energy involved is 4.752 x 10⁶ J
The third option seems correct. Using any bag more than once will help in decreasing the carbon foot print.
This isds beause, if you use paper bag once only, then paper bag is being utilised and more and more paper is being used. So the best way is to use the bag more than once, whichever bag u are using.
The particles in a liquid are extremely fast, not faster than a gas, but faster than a solid. The way the particles move allow you to get volume but not area for it doesn't have a defiant shape
Hey there!
So we know that m*v=P.
And in this question m=30
v=5 m/s
P = 30*5 Kgm/s
P = 150 Kgm/s
So, your final answer is 150 Kg.m/s
Hope this helps! :)