The answer is: 
The inverse of a function
is another function,
, with the following property:

In other words, the inverse of a function does exactly "the opposite" of what the original function does, and so if you compute them both in sequence you return to the starting point.
Think for example to a function that doubles the input,
, and one that halves it:
. Their composition is clearly the identity function
, since you consider "twice the half of something", or "half the double of something".
In general, to invert a function
, you have to solve the expression for
, writing an expression like
. If you manage to do so, then
is the inverse of
.
In your case, you have

Multiply both sides by
to get

Square both sides to get

Finally, subtract 3 from both sides to get

Since the name of the variables doesn't really have a meaning, you can say that the inverse function is

As for the domain of the inverse function, remember what we said ad the beginning: if the original function goes from set A (domain) to set B (codomain), then the inverse function goes from set B (domain) to set A (codomain). This means that the inverse function is defined on an element in B if and only if that element belongs to the range of the original function, i.e. the set of the elements of the codomain
such that there exists
. So, we need the range of
.
We know that the range of
is
. When you transform it to
you simply translate the graph horizontally, so the range doesn't change. But when you multiply the function times
you affect both extrema of the range, turning it into
, which you can simply write as 
Answer:
ΔEDC CNBD
Step-by-step explanation:
The triangles show AAA, which cannot be used to demonstrate congruency
Answer:
i think its 4 packages
Step-by-step explanation:each package is 25 so if you get 2 its 50 + another package would be 75 so you need one more.
hope this helps
Well so you have to go with pemdas. p parenthesis, e exponets,m multipication, d division, a add, s subtract. let start with the parenthesis which is 8 plus negative four to the secondpower minus 6. so negative 4 to the second power is equal to positive sixteen because negative time negative is equal to positive. so 8 plus sixteen is 24-6 is 18. negative 12 divided by 3 is negative 4.so negative 4 time 18 is negative 72 plus 2 is negative 70.the answer is negative 70
Answer:m<b=m<d+125 degrees
Step-by-step explanation: