Answer:
I think it would be 15
Step-by-step explanation:
Answer: (f-g)(2)=14
Step-by-step explanation:
(f – g) (-2) means the same as subtracting f(2) and g(2). Since we are given f(x) and g(x), we can use them to solve. There are two ways to solve. One is to find f(2) and g(2), and then subtract them. Another way is to do (f-g)(x), then plug in x=2. I will show both methods.
Method 1
f(2)=3(2)²+1 [exponent]
f(2)=3(4)+1 [multiply]
f(2)=12+1 [add]
f(2)=13
g(2)=1-(2) [subtract]
g(2)=-1
(f-g)(2)=13-(-1) [subtract f(2) and g(2)]
(f-g)(2)=14
--------------------------------------------------------------------------------------------------------
Method 2
(f-g)(x)=3x²+1-(1-x) [distribute -1]
(f-g)(x)=3x²+1-1+x [combine like terms]
(f-g)(x)=3x²+x
(f-g)(2)=3(2)²+2 [plug in x=2, exponent]
(f-g)(2)=3(4)+2 [multiply]
(f-g)(2)=12+2 [add]
(f-g)(2)=14
--------------------------------------------------------------------------------------------------------
Now, we know that (f-g)(2)=14. We confirmed this with both methods.
Answer: 6 dollars
Step-by-step explanation: since the total price is 54 dollars and we know the price of the wreath, we subtract the wreath from the total, leaving us with 42. Then we do 42 divided by 7 to get the price per ornament(which is too high to be reasonable in any universe), 6 dollars.
The given equation is the best line that approximates the linear
relationship between the midterm score and the score in the final exam.
- AJ's residual is 0.3, which is not among the given options, therefore, the correct option is. <u>E. None of these</u>.
Reasons:
The given linear regression line equation is;
= 25.5 + 0.82·
Where;
= Final exam score;
= The midterm score;
AJ score in the first test,
= 90
AJ's actual score in the exam = 99
Required:
The value of AJ's residual
Solution:
By using the regression line equation, we have;
The predicted exam score,
= 25.5 + 0.82 × 90 = 99.3
- The residual score = Predicted score - Actual score
∴ AJ's residual = 99.3 - 99 = 0.3
AJ's residual = 0.3
Therefore, the correct option is option E;
Learn more about regression line equation here:
brainly.com/question/9339658
brainly.com/question/7361586
brainly.com/question/14747095