If you do the elimination process, here it is.
- A : Too small
+ B : I think so
- C : I little too big
- D : Way too big
Y = -(1/2)(x-2)² +8
Re write it in standard form:
(y-8) = -1/2(x-2)² ↔ (y-k) = a(x-h)²
This parabola open downward (a = -1/2 <0), with a maximum shown in vertex
The vertex is (h , k) → Vertex(2 , 8)
focus(h, k +c )
a = 1/4c → -1/2 = 1/4c → c = -1/2, hence focus(2, 8-1/2) →focus(2,15/2)
Latus rectum: y-value = 15/2
Replace in the equation y with 15/2→→15/2 = -1/2(x-2)² + 8
Or -1/2(x-2)² +8 -15/2 = 0
Solving this quadratic equation gives x' = 3 and x" = 2, then
Latus rectum = 5
Answer:
159
Step-by-step explanation:
10^2+(3+5)^2-5
-> 100 + (3+5)^2 -5
-> 100 + 8^2 - 5
-> 100 + 64 - 5
-> 159
Answer:
4i√5
Step-by-step explanation:

<u>Given </u><u>:</u><u>-</u><u> </u>
- C is the midpoint of BD .
- BC = x + 7
- CD = 8x
<u>To </u><u>Find</u><u> </u><u>:</u><u>-</u>
<u>Answer</u><u> </u><u>:</u><u>-</u><u> </u>
As C is the midpoint , we can say that the line is BCD . So that ,
Substitute the values ,
- ( x+7 ) + 8x = BD
- BD = x + 8x + 7
- BD = 9x + 7 .
<u>Hence</u><u> the</u><u> </u><u>value</u><u> of</u><u> </u><u>BD </u><u>is </u><u>9</u><u>x</u><u> </u><u>+</u><u> </u><u>7</u><u> </u><u>.</u>