Starts off with 67 people.
Pier two: 67 + 36
103 - 23 = 80
Pier three: 80 + 18
98 - 29 = 69
There will be 69 people on the boat heading for Pier four
Answer:
Discrete. See explanation below
Step-by-step explanation:
We need to remember some previous concepts:
We have two types of numerical data: Discrete and Continuous
When we say Discrete data we are refering to data that is countable or can be expressed with integers in a domain.
In the other case when we talk about continuous data we are refering to data that is continuous in a specified domain, it can contain decimals or rational numbers in the Real numbers for example.
For this special case we know that they select a sample size of n=1020 and the sample proportion of people in the United States who wash their hands after riding public transportation was 0.44 or 44% in percentage.
![\hat p = \frac{X}{1020}=0.44](https://tex.z-dn.net/?f=%5Chat%20p%20%3D%20%5Cfrac%7BX%7D%7B1020%7D%3D0.44)
![X=0.44*1020=448.8 \approx 449](https://tex.z-dn.net/?f=%20X%3D0.44%2A1020%3D448.8%20%5Capprox%20449)
But the number of subjects on this survey needs to be Discrete, since the possible values are 0,1,2,3,4,.....,n and never we have decimals or continuous data in order to express this.
Answer:
![Ratio = 2 : 15](https://tex.z-dn.net/?f=Ratio%20%3D%202%20%3A%2015)
Step-by-step explanation:
Given
--- scale factor
Required [missing from the question]:
The ratio of width of the model to the original
From the question, we understand that the scale factor is: 2 : 15
The ratio of the width of the model to the original equals the given scale factor i.e.
![Ratio = 2 : 15](https://tex.z-dn.net/?f=Ratio%20%3D%202%20%3A%2015)
Answer:
a) 7.79%
b) 67.03%
c) Cumulative Distribution Function
![P(t) = \displaystyle\int^{\infty}_{-\infty} 0.1e^{-0.1t}~dt\\\\= \displaystyle\int^{b}_{a} 0.1e^{-0.1t}~dt, ~~a\leq t \leq b](https://tex.z-dn.net/?f=P%28t%29%20%3D%20%5Cdisplaystyle%5Cint%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7D%200.1e%5E%7B-0.1t%7D~dt%5C%5C%5C%5C%3D%20%5Cdisplaystyle%5Cint%5E%7Bb%7D_%7Ba%7D%200.1e%5E%7B-0.1t%7D~dt%2C%20~~a%5Cleq%20t%20%5Cleq%20b)
Step-by-step explanation:
We are given the following in the question:
![p(x) = 0.1 e^{-0.1x}](https://tex.z-dn.net/?f=p%28x%29%20%3D%200.1%20e%5E%7B-0.1x%7D)
where x is the duration of a call, in minutes.
a) P( calls last between 2 and 3 minutes)
![=\displaystyle\int^3_2 p(x)~ dx\\\\= \displaystyle\int^3_20.1e^{-0.1x}~dx\\\\=\Big[-e^{-0.1x}\Big]^3_2\\\\=-\Big[e^{-0.3}-e^{-0.2}\Big]\\\\= 0.0779\\=7.79\%](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint%5E3_2%20p%28x%29~%20dx%5C%5C%5C%5C%3D%20%5Cdisplaystyle%5Cint%5E3_20.1e%5E%7B-0.1x%7D~dx%5C%5C%5C%5C%3D%5CBig%5B-e%5E%7B-0.1x%7D%5CBig%5D%5E3_2%5C%5C%5C%5C%3D-%5CBig%5Be%5E%7B-0.3%7D-e%5E%7B-0.2%7D%5CBig%5D%5C%5C%5C%5C%3D%200.0779%5C%5C%3D7.79%5C%25)
b) P(calls last 4 minutes or more)
![=\displaystyle\int^{\infty}_4 p(x)~ dx\\\\= \displaystyle\int^{\infty}_40.1e^{-0.1x}~dx\\\\=\Big[-e^{-0.1x}\Big]^{\infty}_4\\\\=-\Big[e^{\infty}-e^{-0.4}\Big]\\\\=-(0- 0.6703)\\= 0.6703\\=67.03\%](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint%5E%7B%5Cinfty%7D_4%20p%28x%29~%20dx%5C%5C%5C%5C%3D%20%5Cdisplaystyle%5Cint%5E%7B%5Cinfty%7D_40.1e%5E%7B-0.1x%7D~dx%5C%5C%5C%5C%3D%5CBig%5B-e%5E%7B-0.1x%7D%5CBig%5D%5E%7B%5Cinfty%7D_4%5C%5C%5C%5C%3D-%5CBig%5Be%5E%7B%5Cinfty%7D-e%5E%7B-0.4%7D%5CBig%5D%5C%5C%5C%5C%3D-%280-%090.6703%29%5C%5C%3D%200.6703%5C%5C%3D67.03%5C%25)
c) cumulative distribution function
![P(t) = \displaystyle\int^{\infty}_{-\infty} 0.1e^{-0.1t}~dt\\\\= \displaystyle\int^{b}_{a} 0.1e^{-0.1t}~dt, ~~a\leq t \leq b](https://tex.z-dn.net/?f=P%28t%29%20%3D%20%5Cdisplaystyle%5Cint%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7D%200.1e%5E%7B-0.1t%7D~dt%5C%5C%5C%5C%3D%20%5Cdisplaystyle%5Cint%5E%7Bb%7D_%7Ba%7D%200.1e%5E%7B-0.1t%7D~dt%2C%20~~a%5Cleq%20t%20%5Cleq%20b)
The given equation of parabola is
![\frac{1}{32} (y-2)^2 = x-1](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B32%7D%20%28y-2%29%5E2%20%3D%20x-1%20)
Which can also be written as
![x = \frac{1}{32} (y-2)^2 +1](https://tex.z-dn.net/?f=%20x%20%3D%20%5Cfrac%7B1%7D%7B32%7D%20%28y-2%29%5E2%20%2B1%20)
Here vertex (h,k) is (1,2)
And value of a is
![a = \frac{1}{32}](https://tex.z-dn.net/?f=%20a%20%3D%20%5Cfrac%7B1%7D%7B32%7D%20)
Formula of focus is
![(h+ \frac{1}{4a} , k)](https://tex.z-dn.net/?f=%20%28h%2B%20%5Cfrac%7B1%7D%7B4a%7D%20%2C%20k%29%20)
Substituting the values of h,k and a, we will get
![(1+ \frac{1}{4*(1/32) } , 2} = (1+ 8,2) = (9,2)](https://tex.z-dn.net/?f=%20%281%2B%20%5Cfrac%7B1%7D%7B4%2A%281%2F32%29%20%7D%20%2C%202%7D%20%3D%20%281%2B%208%2C2%29%20%3D%20%289%2C2%29%20)
Therefore the correct option is the last option .