Rhythms that occur faster and slower than the beat are b.<span>not synchronized with the time signature. The synchronization follows the same beat or rhythm. If the time signature say is lower than the original, then the rhythm should be faster. Otherwise, the rhythm is slower than the original one.</span>
Answer:
Vy = V sin theta = 30 * ,574 = 17.2 m/s
t1 = 17.2 / 9.8 = 1.76 sec to reach max height
Max height = 17.2 * 1.76 - 1/2 * 4.9 * 1.76^2 = 15.1 m
H = V t - 1/2 g t^2 = 1.2 * 9.8 * 1.76^2 = 15.1 m
Time to fall from zero speed to ground = rise time = 1.76 sec
Vx = V cos 35 = 24.6 m / sec horizontal speed
Time in air = 1.76 * 2 = 3.52 sec before returning to ground
S = 24.6 * 3.52 = 86.6 m
Complete question:
What is the peak emf generated by a 0.250 m radius, 500-turn coil is rotated one-fourth of a revolution in 4.17 ms, originally having its plane perpendicular to a uniform magnetic field 0.425 T. (This is 60 rev/s.)
Answer:
The peak emf generated by the coil is 15.721 kV
Explanation:
Given;
Radius of coil, r = 0.250 m
Number of turns, N = 500-turn
time of revolution, t = 4.17 ms = 4.17 x 10⁻³ s
magnetic field strength, B = 0.425 T
Induced peak emf = NABω
where;
A is the area of the coil
A = πr²
ω is angular velocity
ω = π/2t = (π) /(2 x 4.17 x 10⁻³) = 376.738 rad/s = 60 rev/s
Induced peak emf = NABω
= 500 x (π x 0.25²) x 0.425 x 376.738
= 15721.16 V
= 15.721 kV
Therefore, the peak emf generated by the coil is 15.721 kV
Answer:
c. The temperature at which a glass transforms from a solid to liquid.
Explanation:
The glass transition temperature is said to be a temperature range when a polymer structure transition from a glass or hardy(solid) material to a rubber like or viscous liquid material.
The glass transition temperature is an important property that is critical in product design.
Answer:
Large above ground mausoleums were not common in the elite Shang burials.
Explanation:
Large, above the ground mausoleums were not common so the answer is option B.